

One-shot learning task: per category applicable to novel categories **Omniglot dataset:** characters character - 1623 character classes

- Goal: categorise data by training a single example

- Extracted features used to generalise knowledge

- 50 natural and fictitious alphabets with 15-40

- 20 handwritten 105x105 binary images per each

Siamese network

Current top performing "vanilla"* deep learning model for the one-shot learning task on the Omniglot dataset is a Siamese CNN proposed by Koch et al. [1]

Siamese network:

- taking one of the two
- similar

- Two identical branches (same weights) - Input: pair of data, with each branch - Target: learn a distance metric and estimate the probability that the pair is

> **Proposed Siamese CNN by** Koch et al. for the one-shot learning task on the Omniglot dataset, which is currently the top performing deep learning model [1]

*no generative/memory units [1] G. Koch et al., Siamese Neural Networks for One-shot Image Recognition, 2015

Triplet network

An abstract representation of a triplet network [2]

[2]E. Hoffer and N. Ailon, Deep metric learning using Triplet network, 2014 [3]V. Kumar et al., Learning Local Image Descriptors with Deep Siamese and Triplet Convolutional Networks by Minimising Global Loss Functions, 2016

Triplet network:

- Use of three branches (anchor, positive and negative) and
- a triplet as input
- Calculation of metric distance between anchor-positive and anchor-negative

Network specific experiments:

- Loss functions (triplet, softmax, global and global+triplet)
- mining)
- Joint/disjoint anchor with positive and negative branches

Final model:

- Use of global loss function as defined by Kumar et al. [3]
- Random sampling

- Sampling methods (random and hard-positive/negative)

Results

Model	20-way one-shot validation accuracy	2 t
Koch <i>et al.</i>	93.42%	9
Siamese CNN		
Siamese CNN	87.81%	8
Triplet CNN	90.31%	8

