
MLP Coursework 4: One-shot learning with Omniglot

G81: s1312650, s1456537, s1747971

Abstract
One of the hallmarks of human intelligence and a
true challenge for machines is the ability to effect-
ively reapply skills from one context to another
with as little retraining as possible. This paper
investigates the performance limits of Siamese
and Triplet networks with convolutional neural
network (CNN) branches for the purposes of one-
shot character recognition on the Omniglot data-
set. We report and compare experimental results
across different loss functions, input sampling
methods, parameter sharing approaches and use
of normalisation and regularisation. We are the
first to apply Triplet networks on the Omniglot
set for one-shot learning and we debut our own
evaluation and training methodology inspired by
the work of Koch et al. (2015). Our final model, a
Triplet CNN with global loss, achieved one-shot
test accuracy of 89.25%, beating the Siamese
CNN baseline’s 84.50% from the interim report,
while underperforming Koch et al. (2015)’ final
model by 2%, which we explain with undertrain-
ing and more modest parameter tuning due to
limited time and computational resources.

1. Introduction
One-shot learning (Fei-Fei et al., 2006) is a minimalistic
mode of generalisation, originating from computer vision,
whose main motivation is to mimic the way humans learn in
order to enable machines to make classification predictions
on a wide family of similar but novel problems. The core
constraint of this type of task is that the algorithm should
decide upon the class of a test instance after seeing just one
training example from each unseen class in question. To
achieve this, Fei-Fei et al. (2006) stated that each time when
learning from a training sample, some general knowledge
should be added to the model and this should not be limited
to only the category the given object is classified as. Fea-
tures and prior knowledge embedded in the model should
then be used to make estimates about classification of new
objects. One major drawback of systems trained to solve a
one-shot task is that they often overfit and fail to generalise
to an extent that makes them useless for practical purposes.
We counter the aforementioned problem by employing a
variety of deep learning techniques in the setting of several
modifications of siamese (Bromley et al., 1994) and triplet
architectures.

A siamese network consists of two identical computational

subgraphs (called legs or branches) that share all paramet-
ers. The two branches produce embeddings for a pair of
inputs and try to verify if the latter come from the same class
by learning a distance measure. The triplet architecture is
an extension to that but tries to learn embeddings between
anchor, positive (same class) and negative (different class)
triples of inputs instead. The models we considered were
always convolutional neural networks and differed only in
their size and hyperparameters.

Omniglot (Lake et al., 2011) is one of the most widely
researched datasets in the one-shot learning community.
It contains 20 binary images per each of 1623 character
classes from over 50 alphabets. To make our approach
comparable with previous results (Lake et al., 2011; Koch
et al., 2015), we have split the data set identically: 40
alphabets in the background set (further subdivided into
a training set of 30 alphabets and a validation set of 10
alphabets) and an evaluation set of 10 alphabets. We are
only using the training set to train our models and the
validation set to tune hyperparameters. We sample the
validation set at the end of each epoch in order to estimate
the accuracy of our model on the binary verification task
and to report intermediate one-shot validation accuracy. We
report our final one-shot learning test accuracy only on
characters drawn from the evaluation set. The difference
between the evaluation set and an ordinary test set is that the
former consists entirely of classes (and not only samples)
unseen during training by the model.

The main research objective of this paper is to investigate
whether triplet networks (Hoffer & Ailon, 2014) constitute
a significant improvement over their siamese equivalents
for one-shot learning on Omniglot. The work can be seen
as a logical continuation of prior research conducted by
Koch et al. (2015). While in the previous stage of the the
project, we exhaustively experimented with a siamese CNN
inspired by Koch et al. (2015)’s model (G81, 2018), here we
provide a detailed discussion of experimental results on the
performance of triplet networks, and in particular on how
different architectural modifications such as regularisation,
activation functions, loss functions as well as sampling
methods, affect their classification accuracy. We reuse our
baseline from the interim report: a fine-tuned adaptation
of the siamese convolutional neural network described in
Koch et al. (2015). To the best of our knowledge, this
is the first paper dedicated to the use of triplet networks
in this exact context and therefore the report elaborates
on implementation specifics of the triplet network and the
possible ways to evaluate its performance on one shot tasks
in a way that makes it comparable to the siamese baseline.
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2. Models
2.1. Siamese convolutional neural network

A siamese network (Bromley et al., 1994) consists of two
identical branches with shared parameters. For the purposes
of one-shot learning on Omniglot, we can assume it consists
of an input layer that takes a pair of images; two legs that
map the images to embedding space and a final output layer
that learns a similarity measure based on the L1 distance
of the embeddings activated by a sigmoid. The model
proposed by Koch et al. (2015) has 4 convolutional and max
pooling layers, followed by a fully connected layer, and
achieved a test accuracy of 92% on the Omniglot dataset.
The leg’s parameters are optimized using a regularized
cross-entropy loss function. During training pairs of same-
class images are oversampled to ensure the leg learns to
verify same-class membership correctly.

2.2. Triplet network

While Koch et al. (2015)’s siamese network achieved con-
siderable performance for Omniglot, triplet networks have
been reported to outperform siamese networks throughout
a number of other problems, ranging from deep ranking
for image retrieval to face recognition (Wang et al. (2014);
Hoffer & Ailon (2014); Schroff et al. (2015); Kumar et al.
(2016)). One of the advantages of using triplets of input
rather than pairs is that this accounts for the notion of con-
text when considering similarity. For example, given a data-
set of random objects, images of two different people could
be classified as coming from the same category, whereas
with a dataset consisting only of people’s images, they
should be viewed as dissimilar (Hoffer & Ailon, 2014). In-
stead of comparing pairs of inputs independently, triplet
networks consider anchor, positive (same-class) and negat-
ive (different-class) 3-tuples, thus encouraging more con-
textualised optimisation (see Figure 1 and 2).

Figure 1. The learning aim of triplet networks is to minimise the
distance between anchor-positive examples and maximise the
distance between anchor-negative examples (figure taken from
Schroff et al. (2015)).

2.2.1. Triplet sampling

An effective sampling technique can result in increased
performance of the model, as shown by Wu et al. (2017).
They emphasise that appropriate sampling leads to more in-
formative tuples and faster convergence, and this can prove
significant within tasks such as one-shot learning where
only a limited subset of samples per class can be used due
to combinatorial explosion. Additionally for triplet net-
works, we obtain the embeddings of the distances between

Figure 2. Triplet network defined by Hoffer & Ailon (2014). The
subnetworks denoted as Net share parameters and each take one
example from the triplet of input and propagate it through the
network to construct their embeddings.

the anchor and the positive and negative examples (denoted
as positive and negative distances respectively). These are
used for comparison within the loss function, which makes
it possible to influence its effectiveness by how we sample
the images of the two branches.

Random sampling. The simplest way to sample from labeled
classes is to randomly select the triplets (Hoffer & Ailon,
2014). After selecting an anchor image, the positive image
is selected randomly from the same class of the anchor
(excluding the anchor image) and the negative is randomly
selected among all of the other classes. For this case, image
samples’ similarity levels are determined strictly based on
the class labels. While such random sampling is computa-
tionally inexpensive, it will frequently lead to triplets that
satisfy (minimise) the defined loss function (Schroff et al.,
2015). Consequently, they will not contribute to actively
training the network and will result in slower convergence.

Hard negative/positive mining. An alternative approach is
to enforce hard negative or positive mining for each of the
negative and positive branches respectively (Schroff et al.,
2015). For hard negative mining, we obtain the closest
image to the anchor which is not in the same class. On the
other hand for positive mining, we obtain the furthest im-
age to the anchor which is classified within the same class.
However, when dealing with large datasets it is computa-
tionally and time-inefficient to compare against all other
images.

Offline vs online input sampling. There are two main gen-
eral approaches to dealing with this issue, either using an
online approach or an offline one to generate the required
samples (Schroff et al., 2015). The online algorithms limit
their scope of hard negative/positive mining search only
within a specific minibatch for each training iteration. Con-
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versely, offline algorithms compute how close or faraway
the images in a subset of the dataset are after a specific
number of epochs. How the closeness is defined is determ-
ined from problem to problem; one of the approaches is to
simply use the Euclidean distance between two images.

2.2.2. Loss functions

The loss functions used for triplet networks differ signific-
antly from those used in Siamese networks and in super-
vised learning in general. Because the samples are hard-
coded to always contain a positive and a negative image in
relation to an anchor image, the usage of the actual labeled
output becomes redundant (Schroff et al., 2015), and so the
triplet network’s focus is on distance metric learning. The
purpose of loss functions used within the triplet networks is
to reduce the distance between the anchor and the positive
image, while also increasing the distance between the an-
chor and the negative image within a minimum margin of
difference (Schroff et al., 2015). Then comparing the two
relative distances one can learn a distance metric, which
the network can use to update the weights of the branches
(Schultz & Joachims, 2004). Thus, for our network to learn
we want to satisfy the following (Schroff et al., 2015):

|| f (xa
i ) − f (xp

i )||22 + m < || f (xa
i ) − f (xn

i )||22, (1)

where f is the output embedding of the triplet network,
a is the anchor image, p is the positive image, n is the
negative image, i is the ith triplet sample and m is the
margin, which prevents the distances from being pushed to
0 by the network. A different distance metric can be used
other than just the squared Euclidean distance, which can
be rewritten more generally as:

d( f (xa
i ) − f (xp

i )) + m < d( f (xa
i ) − f (xn

i )), (2)

where d is the distance metric.

The loss functions that we will explore are: two variations
of basic triplet losses (Schroff et al., 2015; Kumar et al.,
2016), global loss, global plus triplet loss (Kumar et al.,
2016) and a SoftMax loss (Hoffer & Ailon, 2014).

A basic form of the triplet loss function, as defined by
Schroff et al. (2015) for their FaceNet model, can be written
as:

L(xa, xp, xn) =
1
N

N∑
i=1

(max(0, || f (xa
i ) − f (xp

i )||22 −

|| f (xa
i ) − f (xn

i )||22 + m)),

(3)

where N is the batch size. This will be referred to as
Schroff’s triplet loss later in this paper.

An alternative form of the loss function is to constrain the
loss value to be between 0 and 1 (Kumar et al., 2016):

L(xa, xp, xn) =
1
N

N∑
i=1

(max(0, 1 −
|| f (xa

i ) − f (xn
i )||22

|| f (xa
i ) − f (xp

i )||22 + m
))

(4)

This will be referred to as Kumar’s triplet loss later in this
paper.

The loss functions defined in equations 3 and 4 limit their
scope to each individual triplet sample at a time. Kumar
et al. (2016) proposed two additional loss functions, global
and global plus triplet loss, which attempt to minimise
the global error for all of the classes in the training set.
The main motivation of this is to improve the network’s
generalisation capabilities. Additionally, it should help
overcome difficulties with sampling for a triplet networks.
It avoids the necessity to sample all possible triplets for
the network and limits the dependency of fine tuning a
subsampling method. The global loss function obtains
the mean and variances of the distance embeddings of the
network. Thus it will try to minimise the variance of both
the distances of the positive and negative against the anchor
and the mean distance between the anchor-positive and
maximise the mean distance between the anchor-negative.
The global loss function for the triplet networks is defined
as (Kumar et al., 2016):

L(xa, xp, xn) = Var(|| f (xa) − f (xp)||22) +

Var(|| f (xa) − f (xn)||22) +

l ∗ max(0,mean(|| f (xa) − f (xp)||22) −

mean(|| f (xa) − f (xn)||22) + t),

(5)

where l is the constant that balances the term importance
and t is the margin of between the positive and negative
distances to the anchor.

The equation in 5 has been further improved by adding the
original triplet loss function as defined in equation 4 (Kumar
et al., 2016), with the global plus triplet loss function having
the following equation:

L(xa, xp, xn) = g ∗ mean(max(0,

1 −
|| f (xa

i ) − f (xn
i )||22

|| f (xa
i ) − f (xp

i )||22 + m
)) +

Var(|| f (xa) − f (xp)||22) +

Var(|| f (xa) − f (xn)||22) +

l ∗ max(0,mean(|| f (xa) − f (xp)||22) −

mean(|| f (xa) − f (xn)||22) + t),

(6)

where g is a constant that indicates the importance of the
original triplet loss function.

Another approach, as defined by Hoffer & Ailon (2014) in
the original paper that introduces the triplet networks, is
using SoftMax. With the usage of SoftMax we obtain a
ratio measure between the positive and negative distances
to the anchor. This method reduces the need for an ap-
propriate sampling method for the triplets and, unlike the
previous loss functions, it does not have any parameters to
be fine tuned. The SoftMax result for the distance between
the positive and the anchor is obtained with the following
equation:
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dp =
e|| f (xa)− f (xp)||22

e|| f (xa)− f (xp)||22 + e|| f (xa)− f (xn)||22
, (7)

and respectively for the negative to the anchor distance:

dn =
e|| f (xa)− f (xn)||22

e|| f (xa)− f (xp)||22 + e|| f (xa)− f (xn)||22
, (8)

with the final loss function obtaining the mean squared error
of the two distances:

L(xa, xp, xn) = ||dp, dn − 1)||22 (9)

2.2.3. Layer parameter sharing

Considering the triplet network purely as an extension to the
Siamese network suggests using full sharing of layer para-
meters. An alternative approach is using disjoint parameters
for the anchor branch (Ponti et al., 2017). They recommend
keeping parameters disjoint when the image branches come
from different domains (e.g. sketch vs. photo in sketch-
based image retrieval); using a hybrid half-shared model
when the input domains are similar (e.g. sketch and image’s
edgemap) and sharing parameters fully when the domains
are close such as face recognition. We report results for
triplet nets with both shared and disjoint weights.

2.2.4. Normalisation

Input normalisation. Throughout the body of research on
neural networks, various normalisation approaches have
been proposed to introduce improvements in training. (Sola
& Sevilla, 1997) suggest that input data normalisation is an
important technique to ensure good training results and fast
convergence. They propose normalising the inputs to three
different intervals: (0.1, 0.9), (0.05, 0.95) and (0, 1), and
show comparable results for all of them. Subsequently, we
consider input normalisation to (0, 1) in some of our further
experiments.

Local response normalisation. Local response normalisa-
tion (LRN) is an approach introduced in Krizhevsky et al.
(2012) and applied in their ImageNet model. Authors pos-
tulate that CNNs using ReLUs (Nair & Hinton, 2010) do
not require input normalisation but can benefit from this
local normalisation scheme to improve the model’s general-
isation capacity. LRN is defined as follows:

bi
x,y = ai

x,y/

(
k + α

min(N−1,i+n/2)∑
j=max(0,i−n/2

(a j
x,y)2

)β
(10)

where a j
x,y is the activation of a neuron at position (x, y) after

applying kernel i and then applying ReLU, b j
x,y is that same

value after response normalisation, and the sum runs over
n "adjacent" kernel maps at the same spatial position and
N is the number of kernels in the layer. The default hyper-
parameter values here are k = 2, n = 5, α = 10−4, β = 0.75.
LRN is inspired by biological mechanisms of local inhibi-
tion; it diminishes responses that are uniformly large in a

given neighbourhood, while making large local activations
more pronounced. Although ImageNet applies LRN just
after ReLU, FaceNet (Schroff et al., 2015) features LRN
layers after pooling layers. As FaceNet is closer in archi-
tecture to our model, we will consider FaceNet’s placement
after pooling layers in our further experiments.

Batch normalisation. Introduced in (Ioffe & Szegedy,
2015), batch normalisation was suggested by the authors as
an alternative to LRN, and as a result, has largely replaced
the usage of LRN in CNNs. Due to FaceNet’s successful
use of LRN, we believed it is noteworthy to compare these
two competing normalisation techniques to validate batch
normalisation’s superiority.

3. Methodology
3.1. Training, validation and evaluation process

Having to sample triplets from a data sample of 32460 from
the training set pushes the possible examples to O(n3). As
with the previous experiments with the Siamese network
(G81, 2018), because of computational and time limitations
it makes it infeasible to use all possible triplets per epoch.
Additionally, having all possible triplets is redundant as a
triplet network should easily be able to map most trivial
triplets (Schroff et al., 2015). We have set the same training
settings as with the Siamese network (G81, 2018), being
for each epoch we have 500 iterations with each iteration
performing gradient descent on a batch of 50 triplets. And
so a total of 25,000 triplets are iterated over for each epoch.
We report validation accuracy on the verification task (of
size 10,000 triplets) and a one-shot validation accuracy
(320 one-shot tasks) after each epoch. Unless specified
otherwise, all experiment were conducted for a duration of
50 epochs.

Our anchor image is sampled each time uniformly to main-
tain equal representation. While for the positive and negat-
ive images, as mentioned previously (2.2.1), we can sample
using a random method or by hard positive/negative mining
when training the network. When validating or testing, the
two branches are always sampled randomly to not skew the
results. For our base model, we initially follow a random
selection of the positive and negative images. Here, we
define the closeness of the images to be whether they are
from the same class or not. The positive image is randomly
selected from the remaining images from the same class as
the anchor. While the negative image, its class and within
example are selected randomly, with an exclusion from se-
lecting the anchor class. Additionally, we explore an online
approach in hard positive and semi-hard negative mining
of images. Because we have a large number of available
classes, we define a minibatch (hence semi-hard) to limit
our scope by randomly selecting one of the classes (except
the anchor class) for the negative branch before finding the
most similar image to the anchor. While for the positive
branch, the batch is defined to be the same as the anchor
class (excluding the anchor image) to find the most dissim-
ilar image against the anchor image. When comparing the
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similarity of images we defined how close one is to another
by computing their structural similarity. This uses a sliding
window with a Gaussian kernel, as defined by Wang et al.
(2004).

Wanting to maintain the same 20-way within-alphabet clas-
sification evaluation method used in the previous paper
(G81, 2018) and defined by Lake et al. (2015) (given a
test image x and N labelled example images of previously
unseen classes, we want to classify x into the correct char-
acter class by pairing it with each example and predicting
class attribute according to maximum similarity), we ad-
apted the way we pass triplet samples to our network. We
first select an alphabet from the evaluation set, as well as 21
characters from it (uniformly and randomly), where one of
the characters is repeated twice, making it the anchor image
whose target class needs to be predicted. We then set as
our negative images the remaining 20 character examples
(which one is a positive image). The distance of the positive
to the anchor branch will be disregarded for the one-shot
task and so any image can be used, which for simplicity
we have just set the positive image the same as the anchor
image. This is done to maintain a strict similarity between
our previous sampling method for the siamese network
(G81, 2018) so the two models can be easily comparable.
To consider a one-shot task successful, we must obtain the
smallest distance between the anchor image and the single
positive image in the negative branch.

The general themes explored in our experiments were:
different activation functions, layer parameter sharing ap-
proaches, loss functions, regularisation and normalisation
schemes. Due to constrained access to computational re-
sources, we performed these strands of research in parallel
to optimally utilise available compute power instead of fol-
lowing the common coordinate descent approach of sequen-
tially building on the results of experiments on different
aspects. Unless specified otherwise, experiments described
in Section 4 build on top of the architecture outlined in
Section 3.2.

3.2. Model implementation

The triplet model implemented is based on the Siamese
network built by Koch et al. (2015) and our adaptation of it
in the previous report (G81, 2018). The architecture used
consists of a total of seven layers, excluding the output
layer and input layer, which takes an image of size 105x105
pixels. The first five layers are mirrored as part of each of
the three branches, of which the first four are convolutional
layers, followed by a fully connected layer that flattens the
output of the previous layer. The convolutional layers have
a filter size of 10x10, 7x7, 4x4 and 4x4 respectively and a
stride of 1. Each of the branches is then connected to a fully
connected dense layer of size 4096, which flattens out the
output. Additionally, max pooling was added after each of
the three first convolutional layers to reduce the size, which
each have a size of 2 and a stride of 2. The first five layers
use a rectified linear unit (ReLu) for our base model. The
sixth layer is a simple non-trainable L1 norm layer that finds

the distances between the embeddings of the anchor image
against the positive and the negative, merging the branches
of the network from three to two. Finally, the last layer is
a non-trainable L2 norm layer which calculates the metric
distance for each of the branches, which summarises the
output to a size of 1. The weights are then updated through
backpropagation based on the defined loss function, which
takes as input the calculated distances of the positive and
negative branches against the anchor. As a default setting,
we incorporated Kumar’s triplet loss function.

The weight and bias initialisation of the network is main-
tained the same as that recommended by Koch et al. (2015),
as indicated by our previous experiments to be optimal for
this task (G81, 2018). Specifically, the weights for all of
the trainable layers were set from a normal distribution
with a mean of 0.0 and standard deviation of 0.002, with an
exception to the dense layer which was initialised with a
mean of 0.0 and standard deviation of 0.2. Also, the bias
was randomly initialised with a mean of 0.5 and standard
deviation of 0.01. Additionally, we maintain the same L2
regularisation within the layers are proposed by Koch et al.
(2015) with a value of 0.0002 for the convolutional layers
and for the fully-connected layer we use a value of 0.001.
Finally, for the learning rule we, again based on our pre-
vious experiments (G81, 2018), use Adam learning rule
(Kingma & Ba, 2014). However, for the learning rate we
determined that a value of 0.0001 is more suitable based on
experiments we conducted, rather than the previous value
of 0.00006.

4. Experimental results
4.1. Activations

We decided to start by experimenting with different con-
volutional layer activation functions on top of our default
model: a triplet CNN with learning rate 0.0001, triplet loss,
fully shared weights, random sampling and a ReLU activ-
ation. We report one-shot validation accuracy of 74.375%
for ReLU, 75% for SELU and 76.25% for ELU. Later on,
when we combined ELU with different loss functions, it
became apparent that it underperforms ReLU significantly:
ReLU with global loss and triplet loss achieved 90.625%
accuracy vs. 87.1875% for ELU; ReLU with just global
loss performed at 90.625% vs. 88.4375% for ELU. In addi-
tion ReLU with our best dropout rate of 0.1 beats ELU by
a margin of 3% (79.480% vs 76.256%). Therefore we de-
cided to proceed using ReLU as default activation function
from now on.

4.2. Layer parameter sharing

To validate which layer parameter sharing approach is bet-
ter, we compared a homogeneous model that used shared
parameters for all three branches (anchor, positive, negat-
ive; labelled as full share in Figure 3), as well as one using
a disjoint parameter set for the anchor branch, and shared
parameters between the negative and positive branches (dis-
joint anchor). Our experimental results show a huge dif-
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ference between models using these two parameter sharing
approaches in terms of their one-shot validation accuracy.
Fully sharing parameters clearly helps in performance from
the very beginning, with the the disjoint anchor approach
achieving a disappointing 9.06% best one-shot validation
accuracy against 74.375% accuracy of the full share model.

Indeed, this was somewhat expected as the three branches
considered inputs from a broadly similar general category
of written characters, and the relative similarity between
them justifies mirroring the parameters in the triplet net-
work. As noted in Ponti et al. (2017), it is more common to
use a heterogeneous network architecture to learn embed-
dings in cases where inputs to each of the branches origin-
ate from different domains, such as one being a sketch of a
duck and another being a photo of it. In addition, Bui et al.
(2016) note that achieving convergence is more difficult in
the disjoint anchor architecture compared to the full share
case. We believe that the issue here is not with problem-
atic convergence but simply due to the former architecture
not being obviously applicable to the problem at hand. In-
formed by this result, all of our further experiments utilise
a homogeneous triplet network architecture.
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Figure 3. One-shot validation accuracy for different layer sharing
approaches.

For our disjoint model, we observed that the value of the
loss function was decreasing (results omitted) with, how-
ever, the one-shot validation maintaining low accuracy. We
can hypothesise that there may be also an underlying issue
of vanishing gradients, as suggested by Bui et al. (2016).
The triplet loss function in combination with the disjoint
network, minimised the loss by pushing the two distances
closer together rather than reducing the positive and increas-
ing the negative. They presume that this happens when the
distances of the positive and negative are naturally close.

To check the validity of this hypothesis We also compared
the disjoint anchor approach with a hard positive sampling
method for 15 epochs, because of the computationally de-
manding usage of hard mining, as seen in Figure 4. The
results obtained when using hard sampling have improved
drastically, with a one-shot validation accuracy of 73.44%.
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Figure 4. One-shot validation accuracy for disjoint with random
and hard positive sampling against joint random sampling.

This method outperforms, at least for the first 15 epochs,
our joint network that uses random sampling which obtains
a 72.5% accuracy on the one-shot validation task.

4.3. Sampling

To investigate which input sampling method is the most
appropriate, we compared random sampling, hard posit-
ive mining and hard negative mining. Using hard positive
mining results in the best one-shot validation accuracy,
achieving its maximum value of 77.18% at epoch 49. Inter-
estingly, hard negative mining results in worse performance
compared to random sampling, with hard negative mining
achieving 73.75% and random sampling attaining 74.38%
one-shot validation accuracy.
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Figure 5. One-shot validation accuracy for various sampling ap-
proaches.

Looking at Figure 5, one might notice that there is an ini-
tial pattern of better performance of hard negative mining
compared to random sampling up until around epoch 15,
and subsequent decline in accuracy. This unexpected worse
performance of the hard negative mining model can perhaps
be attributed to optimisation being stuck in a suboptimal
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area. This claim was also given by Schroff et al. (2015),
that doing an aggressive hard-mining can lead to a bad local
minimum at the early stages of training. In terms of the
learning curves, it is not very clear that hard negative min-
ing and hard positive mining actually contribute to faster
convergence. As such, we were unable to confirm our ex-
pectations guided by claims from Wu et al. (2017). Still,
one can argue that hard positive mining did in fact result in
more informative triplets being used as inputs to training,
as there is almost 3 percentage point increase in one-shot
validation accuracy compared to random sampling.

4.4. Loss functions

For the following experiments, we set all the parameters of
the loss functions to the ones used by Kumar et al. (2016).
The values are as following: Kumar and Schroff’s triplet
losses m = 0.01, global loss l = 0.8 and t = 0.4 and
for global plus triplet loss m = 0.01, l = 0.8, t = 0.4 and
g = 1.0. The best performance of the losses are summarised
in Table 1.

Our experiments with different loss functions contradict Bui
et al. (2016)’s claim that using softmax loss is necessary to
achieve convergence when training. In fact, the model with
softmax loss performed the worst; this could potentially be
explained by noticing that this approach reduces the classi-
fication task to a 2-class problem, resulting in unsatisfactory
generalisation capacity of one-shot learning. Models using
Kumar and Schroff’s triplet losses achieve better one-shot
validation accuracy but clearly get stuck in optimisation,
with their learning curves oscillating within certain bounds
throughout the whole training period. On the other hand,
models based on global loss surpass them at around epoch
9-10 and continue to show upward trajectory in one-shot
validation accuracy up until the end of training.

Comparing against the model using hard positive mining
identified in Section 4.3, we confirm that using global loss
not only makes it no longer necessary to employ a tailored
sampling approach but also that a suitable loss function can
considerably improve performance without the additional
computational cost of non-random sampling. These results
conform the findings by Kumar et al. (2016), that using
global or global plus triplet loss allows for better conver-
gence against other functions and more reliably, specifically
against softmax.

Model One shot accuracy
Hard positive mining 77.18 %
Kumar loss 74.38 %
Schroff loss 75.00 %
Softmax loss 7.82 %
Global loss 90.63 %
Global + triplet loss 90.63 %

Table 1. Comparison of models using different loss functions and
the best sampling method – hard positive mining, as evaluated on
one-shot validation accuracy.
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Figure 6. One-shot validation accuracy for various loss functions.

4.5. Normalisation and regularisation

Additionally, we decided to investigate how different kinds
of layer normalisation methods affect accuracy (See Figure
7). All of the models below are also based on the con-
figuration from subsection 3.2, whose one-shot validation
accuracy was 74.38%. We start off by applying input nor-
malisation (73.44%) and batch normalisation after each
pooling layer (72.50%). Combining input normalisation
with batch normalisation as described above yields 67.50%
one-shot validation accuracy. Thus, neither of these combin-
ations of normalisation approaches with our default model
improve the model’s performance but only decrease it. Ap-
plying local response normalisation to the default model
configuration scores 74.38% one-shot validation accuracy,
and so does not yield any improvements over the default
model. When LRN is combined with input normalisation
it performs slightly worse (73.44%) but at the same level
as with just input normalisation. Relating all these results
back to claims from 2.2.4, we could confirm Krizhevsky
et al. (2012)’s proposition that LRN outperforms input nor-
malisation when both are used independently; but when
both are combined, this fares worse than just using LRN.
On the other hand, using batch normalisation proved to not
only underperform against LRN but also against the default
model without batch normalisation. Our empirical results
show that using LRN is more appropriate than batch norm-
alisation, with the former also being the preferred choice
of normalisation scheme for FaceNet (Schroff et al., 2015).
Still, none of the normalisation schemes explored actually
improved our default model performance – the best one
(LRN) only performed equally well as the default model.
As model parsimony is a generally preferred quality, we
decided not to employ any normalisation in our final model.

We also experimented with various dropout rates on top
of our default configuration from Section 3.2. We report
one-shot validation accuracy for the following rates: 0.1
(79.06%), 0.3 (77.19%), 0.5 (76.88%), 0.7 (66.25%), 0.9
(50.94%). We then applied our best dropout rate (0.1) on
the default model with global loss (88.75%) and with global
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Figure 7. One-shot validation accuracy for various normalisation
schemes.

+ triplet loss (90%). Clearly, adding dropout did not im-
prove the performance of our models trained with global
loss and global + triplet loss (cf. Table 1), which is why
we did not apply dropout in our final model. Although in
general featuring dropout can help combat the effects of
overfitting and consequently improve the model’s general-
isation capacity, we could not demonstrate its benefits in
the context of our triplet network.

5. Test results
Our final triplet CNN differed from the default model out-
lined in Section 3.2 only by the use of global loss instead of
Kumar’s triplet loss. We favoured global against global plus
triplet loss, because it resulted in overall better performance
from epoch to epoch. We compared this model’s one-shot
accuracy on the evaluation set against the baseline siamese
network developed in G81 (2018) (see Table 2). Both of
our siamese CNN and triplet CNN perform worse on the
evaluation set, as could be expected given the fact that the
evaluation set comprises completely novel alphabets, un-
seen by either of the models. However, the gap between
validation and evaluation one-shot accuracy is much smal-
ler for the triplet CNN than the siamese CNN. It could be
argued that this signifies the triplet CNN’s better generalisa-
tion capacity between these two datasets, and specifically,
better ability in one shot learning.

Model Validation Acc Evaluation Acc
Siamese CNN 87.81 % 84.50 %
Triplet CNN 90.31 % 89.25 %

Table 2. Comparison of our Siamese CNN baseline with the final
Triplet CNN, as evaluated on validation and evaluation set one
shot classification accuracy.

6. Conclusions
Through our empirical results, we demonstrated that triplet
CNNs can be successfully applied to one-shot learning for
Omniglot, and that they have a potential to outperform sia-
mese CNNs. Unfortunately, our triplet CNN was not able
to surpass Koch et al. (2015)’s siamese CNN’s one-shot
accuracy for a similarly sized dataset size. Given that Koch
et al. (2015) were able to train for a longer duration (200
epochs and not 50 as in our experiments with triplet CNNs),
and also perform much more exhaustive Bayesian optim-
isation for their hyperparameters, we believe our results are
still noteworthy.

We postulate that global loss allows for better generalisa-
tion than other loss functions. The triplet CNN achieved
1.06% lower accuracy on the evaluation set compared to the
validation set, while the siamese network demonstrated a
larger difference of 3.31% when using a cross entropy loss
function.

7. Future work
To ensure best performance of the global loss function pro-
posed by Kumar et al. (2016), authors suggest finding the
mean and variance against all possible triplets. However,
because of limited time and GPU memory on our local ma-
chines we were constrained to using a relatively small batch
size of 50 triplets. It would be interesting for the future,
when the resources become available, to perform equival-
ent experimentation using a set of much larger batch sizes.
Based on the above mentioned paper, we should expect to
have better convergence and generalisation capabilities and
in turn better one-shot accuracy, for both the validation and
evaluation set, as the batch size increases.

We have seen that using Kumar’s triplet loss function to-
gether with hard positive mining (section 4.3) improved
results against the default model. However, because of
its high computational demand of comparing each image
against all others it is not viable to be used. There are sug-
gestions to incorporate hard mining for each batch passed
within the loss function. One suggestion by Schroff et al.
(2015) is to use a triplet loss with semi-hard negative min-
ing. Another proposed method by Balntas et al. (2016) is
using SoftPN loss function which incorporates a soft pos-
itive and negative mining. They claim that these methods
offer the benefits of having a more refined sampling method
without compromising training speed.

A similar natural extension, as we saw between siamese
and triplet networks, is to evaluate how quadruplet net-
works (Chen et al., 2017; Dong et al., 2017) perform on
the one-shot task. These types of networks utilise even
more information about patterns between anchor-positive
and anchor-negative similarities. For example, Chen et al.
(2017)’s quadruplet network uses a quadruplet loss that not
only aims to minimise positive distances and maximise neg-
ative distances but also ensures that all positive distances
are smaller than negative distances.
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