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Abstract
In our research we focus on hyperparameter op-
timization for standard fully-connected neural
network architectures using the evolutionary al-
gorithms of Evolution Strategies (ES) and the
Genetic Algorithm (GA). We extend our previ-
ous research from using the GA for classification
on the MNIST and EMNIST datasets to using
both ES and GA for classification on the much
more expansive OMNIGLOT dataset. Our ex-
periments with different configurations of the ES
and the GA algorithms indicate that both ES and
GA can find networks with comparable accuracy
on OMNIGLOT. However, when using the GA
it is difficult to find and set the initial ranges
for the hyperparameters that produce the best re-
sults. At the same time, we note that the gradient-
following process of ES risks entrapment in a
local optima. When we combined both the GA
and ES algorithms, we found our best network
architecture. As the purpose of hyperparameter
optimization is to find the best neural network
architecture in the first place, we report an accu-
racy of 51.42% on the test set of the OMNIGLOT
dataset with this architecture. We conclude that
both GA and ES are suitable for hyperparameter
optimization of fully-connected neural networks,
and future research can work towards extending
these techniques to hyperparameter optimization
of convolutional layers on OMNIGLOT.

1. Introduction
When designing a fully-connected neural network, there are
many different hyperparameters to set in order to achieve
best performance on a task. In the first semester, we tried to
set these hyperparameters through time-consuming manual
search processes. However, manual search can be ineffi-
cient and also suboptimal. Consequently, this provides the
motivation for our research in finding alternate methods of
hyperparameter optimization for neural network architec-
tures. Each neural network has four different hyperparam-
eters: number of hidden layers, number of hidden units,
the activation function between layers, and the learning
rule. We investigate two main approaches to optimizing
these hyperparameters in our experiments: the Genetic
Algorithm (GA) and Evolution Strategies (ES). Both GA
and ES are evolutionary algorithms, which are a class of
heuristic algorithms that use techniques inspired by nature

for solving optimization problems. To test these different
approaches, we measure their performance in designing
fully-connected neural networks for the MNIST, EMNIST,
and OMNIGLOT datasets for character recognition.

We had originally planned to use the MNIST, EMNIST,
and CIFAR-10 datasets to examine how different settings
of the GA affected the accuracy of the neural networks. In
our previous work with the GA, we achieved good base-
line results on MNIST and EMNIST of similar accuracy
(approximately 98% and 85% for MNIST and EMNIST
respectively) to the random search methods we performed
in our coursework of the previous term. However, we no-
ticed earlier that it was hard to do analysis on the GA with
the MNIST and EMNIST datasets because they seemed
to have more limited sensitivity to both GA parameters
and hyperparameter optimization under GA. Regardless of
the GA settings, we obtained comparable accuracy. Thus,
we decided we needed a harder dataset. However, if we
used the CIFAR-10 dataset we would have had to move
into convolutional networks for these image classification
tasks. Considering how many networks we need to train for
different GA settings, we decided that the computational
intensity of using convolutional networks was too much
for this research. Consequently, we decided to use the
OMNIGLOT dataset to continue our work in deep hidden
networks. Thus, our new objective became to use the OM-
NIGLOT dataset to study how different GA settings, such
as encoding method and population size, affected the accu-
racy of neural networks. The idea being to find GA settings
that produced accurate neural networks, while minimizing
the number of networks that needed training.

Additionally, we now have expanded our work to a new
objective of examining how ES does in comparison on the
same classification tasks with OMNIGLOT. As ES is an
alternate method for hyperparameter optimization, we can
use it on the OMNIGLOT dataset to try to achieve accurate
neural networks. Since both the ES and GA are different
optimization techniques for the network architecture, we
decided to perform a comparison of different ES techniques
against different settings of the GA to provide insights into
the advantages and disadvantages of each method.

2. Methodology
2.1. Genetic Algorithm

We described in extensive detail the GA in our previous
work, so we provide a brief overview of the process here.
Basically, the GA is a heuristic process that takes a popula-
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tion of solutions and evolves them in an attempt to maxi-
mize their performance on a task (Whitley, 1994). In our
case we seek to optimize the hyperparameters, or the net-
work architecture. The GA starts with a population of
different neural network architectures and these solutions
are then evaluated based on their fitness or performance
on the classification task given. The best solutions then
have a higher chance of producing offspring in the next
generation that combine the hyperparameters of their par-
ent solutions. The idea is that the best solution will come
from the repeated combination of previous solutions after
a fixed number of generations. The main techniques rel-
evant to the GA are: Selection, Crossover, and Mutation
and are explained extensively in Coursework 3 and in (Carr,
2014). As a brief orientation: Selection is the process of
how the GA selects parents for the offspring in the next
generation; Crossover governs how the parents combine
their architectures to produce an offspring; Mutation pre-
scribes the random chance that an offspring changes its
hyperparameters after it is produced before training.

We explain here the method of evaluation for a network as
it fundamentally affects how GA – and ES – work. After
training the network, and obtaining its best validation accu-
racy, we apply a fitness function to transform the accuracy
to its fitness value. We need a fitness function because
validation accuracies can become very similar (frequently
within a percent) in experiments, so the Roulette-Wheel Se-
lection process has little distinction between the network’s
fitness level. Essentially this means that its harder for the
Selection process to bias parent selection towards the rel-
atively more fit network architectures (see previous work
or (Whitley, 1994) for a more thorough explanation). Our
fitness function thus emphasizes the fitness differences be-
tween networks that perform relatively worse and those that
perform better. Additionally, our fitness function also we
need to give bigger penalty to the networks that perform the
worst. Finally, for implementation reasons, we used the fit-
ness function to revert from maximization to minimization
problem. Let x be a network’s validation accuracy, then the
fitness function f is defined as:

f (x) = 2 (1−x) × 10 (1)

In addition to our previous work, we also experiment with
the use of Binary Encoding of the chromosome, or the net-
work architecture’s representation. With Integer Encoding
we observe that the offspring is always bounded inside the
hyperparameter space of its parents that we can call a tesser-
act, as we optimize 4 hyperparameters. Through Integer
Encoding the offspring of two parents will inherit part of the
first and part of the second parent, and in case the crossover
point is on a hyperparameter, the average value of the par-
ents is inherited. Binary Encoding combines all hyperpa-
rameters into a binary chromosome, where each section
of the chromosome represents a hyperparameter (Whitley,
1994). The length of the binary chromosome depends on
the range of values of each hyperparameter. When it comes
to Binary Crossover, the binary chromosome is a one di-
mensional array of binary digits where we randomly select

an index as our crossover point and we take all digits up to
that index from the first parent, and the remaining from the
second. This allows us to escape the tesseract that limits
us with Integer Encoding and we can produce a completely
new network architecture in the Crossover process. Inte-
ger Encoding Crossover is more limited as there are fewer
possibilities for combinations of parent architectures.

To illustrate the difference between Binary and Integer En-
coding, we use a simple example of a single hyperparameter
representing the number of hidden layers as illustrated in
Figure 1. There are five possible crossover points for Bi-
nary Encoding. With Integer Encoding, there are only three
different outcomes. Either the offspring will fully copy one
of the parents, or will take the average of them, resulting
in the following possible values for that hyperparameter:
[6,8,9], were the value 8 is the rounded value of the aver-
age. On the other hand, Binary Encoding with 5 different
crossover points is able to produce eight different values
from those two parents: [1,5,6,7,8,9,10,14], depending as
well on which chromosome is the first parent. In the ex-
ample, we see that the actual crossover point for Binary
Encoding is after the second cell, which means that the
offspring will take each half from its parents.

Figure 1. Binary Crossover of a single hyperparameter (Hidden
Layers) chromosome. Figure is our own.

Similarly, Binary Mutation, which is the process of ran-
domly selecting a binary digit of the chromosome, and
switching its value, has the potential to either make a small
or a large alteration to the value, depending on the digit’s
position. In our example, assuming a mutation occurs on
the child’s first digit, the value changes from 5 to 13, but if
the mutation occurred on the least significant bit, the value
would have change from 5 to 4.

2.2. Evolution Strategies

An alternative method to approach hyperparameter opti-
mization is through the use of ES. The basic idea behind ES
is to start with an initial solution and then use a multivari-
ate Gaussian distribution to form a population of solutions
through sampling the hyperparameter space around the ini-
tial solution. The number n of solutions in the population,
and the covariance matrix Σ of the multivariate normal dis-
tribution are all parameters of the ES. We detail their exact
values in our experiments. Each neural network in the new
population is trained and then achieves a fitness score com-
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miserate to its performance in validation accuracy on the
classification task, with the fitness score calculated simi-
larly to the GA process above. Then based on the fitness
scores of the other sample solutions, the initial solution
updates its hyperparameters to achieve a better fitness score.
The exact update process depends on the type of ES, and
the update process repeats for a fixed number of generations
(another parameter of the ES) or until convergence where
the solution does not improve. In our research we explore
two different types of ES. For clarity, we now refer to the
updated initial solution in any generation as the candidate
solution.

In the simple ES, the candidate solution simply clones, or
adopts, all of the hyperparameters of the best sample solu-
tion in a greedy update process. The next generation then
forms around the new candidate solution according to the
multivariate normal distribution. The algorithm evaluates
these networks and the process repeats.

At the end of 2017, researchers demonstrated how a version
of Natural Evolution Strategy, NES, can be effective and
efficient in solving parameter optimization for complex
problems such as humanoid walking (Salimans et al., 2017).
In their research, NES is essentially doing gradient descent
on the weight parameters for neural networks. The NES is
similar to the simple ES, but instead of just copying the best
solution as the candidate solution, NES uses the fitness or
performance of the other solutions to estimate the gradient
of the solution space and better guide the candidate solution.
Each different solution i of the n total solutions is formed by
altering the candidate solution with Gaussian noise εi from
a Normal distribution with variance σ. Let each solution i
have an associated fitness Fi. Then, letting θt be the weights
at time t and α be the learning rate, we have that the updated
weights are given by (Salimans et al., 2017):

θt+1 ← θt + α
1

nσ

n∑
i=1

Fiεi. (2)

While the research in (Salimans et al., 2017) focused on us-
ing NES for weight optimization, we can also adapt NES for
hyperparameter optimization. The advantage of NES is that
it does not require computing exact gradients, which means
that it can work on non-continuous and non-differentiable
spaces. So although the hyperparameter space we use for
neural networks is neither continuous or differentiable, we
can still use NES to optimize the architectures. For hyperpa-
rameter optimization, the NES now starts with a candidate
neural network architecture and the hyperparameters are
modified with Gaussian noise to generate a new population
of solutions. The Gaussian noise now comes from a mul-
tivariate normal distribution with a mean vector ~µ and a
covariance matrix Σ. For each of our experiments we detail
these choices. The solutions are then trained and evaluated
to obtain a fitness ranking as before. The algorithm then
updates the candidate architecture in the direction of the
gradient in proportion to the learning rate α. The value of
α is an additional parameter of the NES not seen in simple
ES and so has to be also set separately. The process of

updating the hyperparameters with NES can repeat until
convergence, but due to computational restraints we repeat
for a fixed number of generations.

2.3. Datasets

In our research we used the MNIST, EMNIST, and OM-
NIGLOT datasets. All three datasets are for character recog-
nition tasks and each represents a higher level of difficulty.
Previously we focused on the MNIST (LeCun et al., 1998)
and EMNIST (Cohen et al., 2017) datasets which has 10
and 37 characters respectively. Our previous work pro-
vides further details on these two datasets. As mentioned
in Section 1, we discovered that the MNIST and EMNIST
datasets were not very sensitive to changes in the GA pa-
rameters and hyperparameter optimization under GA. We
wanted to keep within the character recognition task as
we had experience working on this task, but we wanted a
harder task that could be done with fully connected net-
works. Consequently, we decided to move to the harder
OMNIGLOT dataset (Lake et al., 2015).

In OMNIGLOT, there are fifty different character alphabets
for a total of 1,623 different classes. Additionally, each
character class consists of twenty renditions of the character
from different people, so there are 32,460 images total. We
adapted the dataset from the associated GitHub source to
work in our current TensorFlow setup. We divided the
dataset up into training, validation, and test sets of sizes
22,722 (70%), 4,869 (15%), 4,869 (15%) respectively.

3. Experiments
We first layout the commonalities in the design setup across
all of our experiments for both GA and ES. The GA and
ES trained fully connected standard neural networks on
the training set and then evaluated their performance on
the validation set to obtain fitness scores as explained in
Section 2. To initialize the weights for all of the neural
networks, we used the Glorot initialization process that
sets all the weights to very small random values (Glorot &
Bengio, 2010). Though the number of hidden layers was
variable, each neural network had a final softmax layer for
classification and the networks trained on the cross entropy
error. Additionally, we used a common mini-batch size
of 100 for all of our experiments with the OMNIGLOT
dataset. To help standardize the experiments, we used the
same random seed each time.

As for the hyperparameter solution space, we did have
some common ranges for both the learning rules and the
activation functions. For learning rules, both ES and GA
had the choice of SGD with learning rate η = 0.15, a mo-
mentum learning rule with momentum of 0.9 and learning
rate of .001, and either RMSProp or Adam with the initial
setup suggested by their creators in (Tieleman & Hinton,
2012) and (Kingma & Ba, 2014) respectively. For further
explanations of the choices of learning rules, as well as
their explanations, please see our previous work. As for
activation functions between each hidden layer, the GA and
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ES could choose ReLU, Leaky-ReLU, ELU, or SELU. We
suggest (Clevert et al., 2015) for a comparison of these acti-
vation functions as well as their mathematical definitions.
Finally, we specify the ranges for the other hyperparameters
of hidden layers and hidden units in each round of experi-
ments as we changed these based on the results obtained.

To standardize the comparisons of our results across our dif-
ferent neural network setups, we always report the highest
validation accuracy a network obtained. Different network
architectures require varying numbers of epochs to train,
and so we used only the best validation accuracy results
from each network for comparison. In effect, this meant
that we were doing a version of early stopping where the
networks are compared at their best results.

3.1. First Round

Our first round of experimentation focused on achieving
diversity in the population of solutions for the GA. The
idea being that a more diverse population more thoroughly
explores the hyperparameter space. Thus, the GA has more
probability of finding betters solutions. In our previous
work we had tried modified elitism on a population of size
10, where we kept the bottom five and top five network
architectures as possible parents for the next generation.
The idea behind modified elitism being that we could keep
training a population of size 10 only, but still try to achieve
diversity in the population by having more potential parent
networks. However, we still were getting less diversity of
population across generations as we see in Table 2. Thus,
extending from our previous coursework, we decided upon
a different tactic of using a larger population of size 100
with regular elitism. The idea being that a greater popula-
tion from the start means that the crossover process of the
GA has more possible solutions to combine or mutate in
order to find a better solution.

In the first experiment we used the GA to train neural net-
works on the EMNIST dataset with a solution population
of size 100 (instead of 10 as in our previous work) over
10 generations. The GA had control over the number of
hidden layers (1-8), number of hidden units (32-128), ac-
tivation functions, and the learning rule just as in the final
experiments in Coursework 3. For consistency, the num-
ber of hidden layers possible was one to eight and hidden
units was 32 to 128. Additionally, we used Roulette-Wheel
as the crossover process because it had marginally better
performance than Tournament selection in our previous ex-
periments on EMNIST. The mutation rate was 0.4 and the
mutation possibilities for each hyperparameter were -3, -2,
-1, 1, 2, 3. As a reminder from previous work, if a mutation
occurs then each hyperparameter has a uniformly random
chance of selecting one of the mutation possibilities and
adding that to its current integer value since we are using
integer encodings (including for activation functions and
learning rules). We used regular elitism, where the best
solution from the previous generation is copied into the
next generation. The idea is that the best solution from
the previous generation can act as a guide in the direction

of a relatively well-performing part of the hyperparameter
space, but the GA still can use other solutions to explore
other hyperparameter choices. As we now had many more
potential parent networks across generations, we no longer
needed to use modified-elitism.

In Table 1, we show the final validation accuracy achieved
by GA with a population of 100 and regular elitism in com-
parison with the best baseline accuracy we achieved with
modified elitism on a population of size 10. We see that the
increase in population had little effect on the final validation
accuracy achieved with both having comparable accuracy
within 0.2%, a likely result of different initialization. Conse-
quently, for the EMNIST dataset using a bigger population
size of 100 did not actually help achieve better results.

Population Size 10 100

Classification Accuracy 85.361% 85.114%

Table 1. Table comparing best validation accuracy of GA obtained
on the EMNIST dataset with population size of 10 with modified
elitism and an increased population size of 100 with elitism.

We examined the percentage of unique solutions across
each generation in Table 2 to see whether the increase in
population size actually helped with genetic diversity. We
compare against our baseline experiment from our previ-
ous work with population size 10, with the additional 10
networks from the previous generation retained under mod-
ified elitism (20 total). Our results show that the population
of size 100 had a higher percentage of unique solutions.
The higher population size means there are more poten-
tial parents in the previous generation for offspring in the
subsequent generation. As a result, the offspring have a
higher chance of choosing different parents in the crossover
process and thereby obtaining different hyperparameters.
While the Roulette-Wheel Selection biases the parent selec-
tion to the more successful networks, the higher population
means that there are more networks with comparable accu-
racy and so more parent choices for offspring.

Generation 10-Population 100 Population
Uniqueness Uniqueness

1 100% 100%
2 90% 100%
3 95% 100%
4 95% 100%
5 80% 100%
6 75% 100%
7 95% 100%
8 90% 100%
9 80% 100%
10 85% 100%

Table 2. The percentage of unique neural networks per generation
under the GA with population sizes of 10 with modified elitism
and 100 with elitism.

While the GA did not obtain higher accuracy with a larger
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population, it did maintain a more diverse population. Espe-
cially when there are only twenty networks total (ten from
the previous generation under modified elitism) that are
potential parents, a loss of diversity means that there is less
thorough exploration of the hyperparameter space. While
having a more diverse population is not the goal of our
experiments, it does indicate that the algorithm did a more
thorough search through the hyperparameter solution space.
On more complicated datasets that are more sensitive to
hyperparameter changes, a more extensive search of the
hyperparameter space helps avoid entrapment in local op-
tima. Consequently, moving onto the harder OMNIGLOT
dataset with the GA, we decided to keep the diversity of the
population with a population size of 100.

3.2. Second Round

In the next round of experimentation, the major change was
using the OMNIGLOT dataset for classification accuracy.
In our previous work, we had already seen that the GA was
quickly obtaining the best classification accuracy within a
few generations and thus did not seem to be very sensitive
to hyperparameter change. Now that we had settled on
a higher population from our first experiment to help do
a more thorough search of the hyperparameter space, we
moved to the harder OMNIGLOT dataset. As there are
many more characters of many different languages, the clas-
sification task became significantly harder. Consequently,
we believed that the hyperparameter selection for the GA is
more critical in determining classification accuracy.

This round of experimentation was about finding suitable
hyperparameter ranges for the GA on the OMNIGLOT
dataset. In the first experiment of this round, we used GA
on the OMNIGLOT dataset. We also changed our mutation
rate from 0.4, down to 0.1, but allowed the mutation greater
variability for hidden units allowing values of -30,-20,-10,
10, 20, 30. The GA could choose 1 to 8 hidden layers, 32 to
128 hidden units, the standard learning rules and activation
functions. The GA had a population size of 100 over 10
generations. We observed that we needed to increase the
number of hidden units and hidden layers available as the
best networks had architectures at the end of the range of
the hyperparameter space. As we added more hidden units
and layers, we also increased the number of epochs (up to
200) that the neural networks trained because more hidden
units led to higher training epochs to get the best validation
accuracy. The results with the highest accuracy achieved
for each hyperparameter range are in Table 3.

Hyperparameter ranges Validation accuracy

32-128 HU, 1-8 HL 46.58%
64-256 HU, 4-12 HL 49.04%
128-384 HU, 4-12 HL 50.45%

Table 3. GA performance on the OMNIGLOT dataset with differ-
ent hyperparameter ranges, where HU stands for hidden units, and
HL for hidden layers.

We stopped at 384 hidden units because the best architecture
used fewer than the limit (later in Round 5 of experiments
we realized we had stopped prematurely). From this round
of experimentation, we also realized that the current imple-
mentation of GA does have a drawback in the difficulty to
find an appropriate range for hyperparameter settings. We
note that we did limit GA to not be able to mutate outside of
the initial range. However, we did this because we wanted
GA to do a thorough search of a given hyperparameter
space. A random mutation outside of the initial hyperpa-
rameter space may lead to a better solution, but it’s also
very likely to lead to just a worse solution because of its
randomness. Thus, we wanted the GA to focus on one area
of the hyperparameter space and not just experiment with
random mutation outside of it. In addition, our following
rounds of experiments would be with ES, which follows an
estimated gradient of the hyperparameter space to find the
best solutions. Thus, ES actually has a more refined method
for searching outside its initial hyperparameter bounders
than just random mutation.

3.3. Third Round

We now moved into experimentation with ES. First, we
wanted to see if either evolutionary algorithm had better
performance on finding network architectures with higher
classification accuracy. Further, we wanted to investigate
and better understand the differences between the search
techniques for GA and ES. This way we could analyze
their performance and identify the relative advantages and
disadvantages of each search technique on hyperparameter
optimization. Consequently, our first experiment in this
round consisted of using Simple ES on the OMNIGLOT
dataset. The initial candidate solution had a random chance
of appearing in the hyperparameter ranges of: 1-8 for Hid-
den Layers, 32-128 for Number of Hidden Units, and any
combination of four Activation Functions and four Learn-
ing Rules that were described in coursework 3. Besides
defining the initialization space, for Simple ES there is also
the hyper-hyperparameter of σ. As ES requires a normal
distribution around the individual for the generation’s sam-
pling, finding the correct σ value for each hyperparameter
is crucial. In addition, using the same σ value for all four
hyperparameters is not appropriate, as for example a noise
value of 2 is not actually proportionate when it comes to
hidden units, compared to hidden layers. For that reason,
we defined four σ values, [2,2,2,20], where the last one is
for hidden units. We show the results in Table 4 of the initial
experiment with ES in comparison to the GA performance
of the previous round of experiments.

EA Algorithm Validation accuracy

ES (best) 50.60%
GA (best) 50.45%

Table 4. Best network accuracy from ES and GA for 100 genera-
tions and population size of 10.
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We note that ES and GA both found networks of near com-
parable accuracy. However, we realized that the ES might
be not performing as well as possible because its evolution
process relies on gradually shifting the candidate in the
direction of the gradient. The total number of networks
trained in all 4 cases, still was 1000, which meant that both
GA and ES were training the same number of networks
so we could continue to compare results. The experiments
with different generation and population setups and the
results are presented in Figure 5.

.

ES Setup Best Validation accuracy

100 Gen 10 Pop 51.97%
10 Gen 100 Pop 50.60%
50 Gen 20 Pop 51.20%
20 Gen 50 Pop 50.31%

Table 5. Best network accuracy from ES and GA, with the same
initialization space, for 100 generations and population size of 10.

We see that training the simple ES for 100 generations ac-
tually achieved the best performance. This is likely due
to how ES requires many generations of adaption for the
candidate solution to follow the locally estimated gradient
to an optima. Finally, when examining the solution from
ES that performed the best we saw that it actually had more
hidden units than we had allowed the GA. Our GA imple-
mentation does not explore outside of the hyperparameter
ranges given (see previous round for the explanation of our
reasons), so it did not and could not find the better solution
that ES found. The candidate solution in ES has no bounds
on its movement in hyperparameter space.

3.4. Fourth Round

In the next round of experiments, we wanted to experiment
with more configurations of the GA, including using what
we learned from the ES. This time we increased the range
of the GA’s hidden units to be from 384-640 hidden units
(trained for 200 epochs) so that it could explore the same
area of hyperparameter space where ES had found its best
solution. Following the same reasons, we scale the range
of Hidden Layers to [4-12]. The results are in Table 6.

Algorithm Best Validation accuracy

GA (Integer Encoding) 52.35%
Simple ES 51.97%

Table 6. Best network accuracy from ES for 100 generations and
population size of 10 and GA for 10 generations and population
size of 100. 384-640 Hidden Units, 4-12 Hidden Layers initializa-
tion space for the GA.

In comparison with the simple ES, GA now actually per-
form better. This outcome is probably related to how the
GA has the ability to throughly search its defined area, in

contrast with the simple ES that is actually moving around
the solution space, chasing the better candidate. At this
point we applied Binary Encoding on the GA for the rea-
sons explained more extensively in Section 2, mainly to
allow for more choice in both the Crossover and Mutation
processes. The results are in Table 7.

Algorithm Best Validation accuracy

GA (Binary Encoding) 52.67%
GA (Integer Encoding) 52.35%
Simple ES 51.97%

Table 7. Best network accuracy with Integer and Binary Encoding
for 10 generations and population size of 100. 384-640 Hidden
Units, 4-12 Hidden Layers

The different technique offered by the Binary Encoding
for crossover and mutation seemed to allow GA and ES
to achieve slightly better results. We offered explanations
for this in Section 2. However, further experimentation is
needed to confirm such findings in the first place.

3.5. Fifth Round

Under Simple ES, the candidate function follows a greedy
strategy of simply copying the best performing network.
On the other hand, NES follows a more nuanced maximiza-
tion strategy where the candidate solution estimates a local
gradient in each generation and then follows it for the sub-
sequent generation to achieve better performance (Salimans
et al., 2017). In this section, we wanted to experiment with
NES to see if its local gradient estimation could help with
the finding better hyperparameter solutions. We could then
compare NES with simple ES as well.

As explained above in Section 2, the learning rate α in
Equation 2 determines how much the candidate solution
adapts in the direction of the local gradient. Consequently,
we needed to find a suitable α value for NES in order to
progress in the direction of an estimated local gradient but
not too quickly to skip the direction of the real gradient. In
order to pick the best suitable learning rate constant α, we
ran an NES experiment with 5 generations of 20 population
each combining with the selected α constant values of 0.01,
0.05, 0.1, 0.5, 1, 1.5, 2, 2.5, 3 and 3.5. We found that
an α value of three had the best progression in validation
accuracy by the end of fifth generation (46.50%), so we
used it for our actual experimentation with NES.

We now were ready to use an α = 3 for trying NES and
comparing it to Simple ES. So we ran an experiment of
population 20 and 50 generations with NES. All of the other
hyperparameters were the same as our runs with Simple ES.
Table 8 shows the comparison of accuracy value attained
for NES against the best simple ES configuration from the
previous experimental results.

Upon examination, we see that NES actually performed
worse than simple ES. While further experimentation was
unfortunately not possible due to computational and time
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Algorithm Best Validation accuracy

NES 48.31%
Simple ES 51.97%

Table 8. Best accuracy from NES for α = 3 against best simple
ES configuration.

constraints, we hypothesize that the result was likely due
to needing a more careful selection of the learning rate pa-
rameter for NES α. A too high α value may have resulted
in the candidate solution continually skipping over the opti-
mal region for the hyperparameters. Further tuning the α
parameter must then be a task for future work.

3.6. Sixth Round

From the analysis of experimental results of GA and ES
individually, we decided to move forward in our research
by implementing the combination of GA with ES in this
section for the sixth round of experiment. The idea being
that a combination of GA and ES will result in the best of
both techniques. The main objective then is to obtain an
even higher validation accuracy.

The best configuration for GA and ES was chosen for com-
bination based on the previous rounds of experiments. From
the result of fourth round experiment Subsection 3.4, we
found that Binary Encoding of GA perform slightly better
on comparison with Integer Encoding. Additionally, from
the results and conclusion of Subsection 3.5, simple ES
performed better than NES for our experiments.

The working concept behind the combination of GA and
ES experiment is that for every evolved GA’s generation,
we collect the best of that generation, and use it as the
initial candidate on ES. ES then evolves for a further gen-
eration, and if a better solution is found, we replace that,
as the new best, on the GA’s following generation. Thus,
simultaneously we benefit from GA’s wide search on the
solution space, and ES’ dense exploration around GA’s best.
Moreover, this technique also helps the ES to avoid being
trapped on local optima.

With the configured network settings for combined GA and
ES architecture, we first ran an experiment with the same
hyperparameter settings as configured in the Subsection 3.4.
Additionally, to check if we could attain better accuracy
with an even higher number of hidden units, we ran sec-
ond experiment of same architecture with only change of
increasing the hyperparameter space neuron values ranging
from 500 to 755. The results are in Table 9.

From our results we see that the first experiment produced
the network best validation accuracy value we achieved
so far at 52.87% (network described in following Section).
We believe that this is because GA offers the advantages of
searching a wider hyperparameter space, while ES helps
fine tune a search in a local area by following a gradient. Of
note, increasing the number of hidden units did not allow

Hidden units Best Validation accuracy
(GA + ES)

384 - 640 52.87%
500 - 755 52.47%

Table 9. Best validation accuracy achieved with respective ranges
of hidden units for GA + ES architecture for 10 generations and
population size of 100.

for better accuracy. In the long version of our results we saw
that networks with relatively higher values of hidden units
had similar or lower accuracies than our best network with
527 hidden units per layer. This is important as it indicates
that just adding more hidden units would not make our
results any better, and that ES and GA had found an optima
in network architectures.

3.7. Seventh Round

In our final experiment, we trained the best network ar-
chitecture from all of our experiments on the training set
and then evaluated it on the test set. The idea being that
the performance on the test set would give an idea of the
network’s ability to generalize onto unseen data. As the
purpose of GA and ES in hyperparameter optimization is
to find the best settings of hyperparameters, we needed to
actually give a test of this performance. The best network
came from the first experiment of the combination of ES
and GA. The network consisted of 7 hidden layers, 527
hidden units per layer, Leaky-ReLU, and SGD. The net-
work achieved a 51.42% accuracy on the test set, while
it had achieved a 52.88% accuracy on the validation set.
As this is a relatively small difference between validation
and test accuracy, we propose this as a suitable baseline for
the OMNIGLOT dataset for standard fully connected neu-
ral networks without additional modifications like Batch
Normalization or Dropout.

4. Related Work
The field of hyperparameter optimization continues to ex-
pand as it directly impacts the performance of increasingly
complicated neural networks and large hyperparameter
spaces make efficiently searching the space increasingly
important. Many researchers have already looked at how
to use various evolutionary algorithms to discover better
network architectures. As far back as 2000, researchers
were looking at using the GA to train the weights in simple
neural networks and then combine these results with back-
propagation to achieve better performance (Castillo, 2000).
Later work expanded this to hyperparameter optimization,
with Neuroevolution of Augmented Topologies (NEAT)
being a continually improved and currently used GA-based
method to optimize neural network architectures while fo-
cusing on keeping the size of the networks small (Stanley
& Miikkulainen, 2002). In ES, the paper of (Salimans et al.,
2017) revitalized interest in using ES for weight optimiza-
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tion. Recent research in 2017 also looked at using ES for
hyperparameter optimization (Vidnerová & Neruda, 2017).

For the OMNIGLOT dataset, all of the available litera-
ture appears to only focus on using it for one-shot and
five-shot learning approaches. The complicated network
architectures involving Siamese neural networks and con-
volutional layers achieve accuracies of around 93% for
classification (Vinyals et al., 2016). However, we wanted
to investigate how well the GA and ES methods could do
on the simpler fully-connected networks as we only had the
computational resources for such a task. A survey of the
research in this area indicates that no researchers have at-
tempted using fully connected neural networks on this task,
nor using GA and ES on the dataset itself. Consequently,
our research offers new results in this area. We also pro-
vide our own comparison and analysis of the GA and ES
algorithms on the OMNIGLOT dataset in the context of
hyperparameter optimization.

We believe further testing of the ES algorithms could lead
to new insights. First, there are different ES strategies
that could result in even better performance. A promis-
ing direction is to use Covariance-Matrix Adaption (CMA)
ES (Hansen, 2016). In CMA-ES, the covariance matrix
of the multivariate distribution varies across generations
based on how similar the fitness results from the previous
generation were. In this manner, CMA-ES can better search
smaller or larger areas of the hyperparameter space based
on its confidence that the candidate is evolving in the right
direction. The next main avenue of research we propose is
to use ES or GA in the context of convolutional networks.
Though we did not have the computational resources to ex-
plore the hyperparameter space of convolutional networks,
such hyperparameter optimization is very important as con-
volutional networks have the best results on many neural
network tasks. Our work and analysis on GA and ES may
help provide guidance for such future work.

5. Conclusions
Throughout all of our experiments our overall motivation
was to explore hyperparameter optimization using the evo-
lutionary algorithms of ES and GA. In the initial rounds
of experimentation we focused on our first objective of ex-
amining what different settings of the GA could lead to the
best classification accuracy on character recognition. In our
first round of experimentation on EMNIST, we saw that a
higher population size under GA helped maintain solution
diversity in the hyperparameter space. This was important
to ensure more thorough exploration of the hyperparameter
space. However, we now had to change our focus to the
harder OMNIGLOT dataset in this work as we had dis-
covered that MNIST and EMNIST did not seem to be as
sensitive to the parameters of the GA and hyperparameter
optimization of the GA. Our initial experiments on OM-
NIGLOT showed us the difficulty in finding the appropriate
hyperparameter ranges for GA under our implementation.
Setting the bounds correctly turned out to be critical to get-

ting GA to achieve its better accuracy. Additionally, later
experimentation with GA (in the fifth round) showed us
that binary encoding can also help achieve slightly better
accuracy. The Binary Encoding provided more opportu-
nities for the Crossover Process and binary mutation to
experiment with different network architectures and might
have therefore helped with finding better ones.

We then moved onto our second main objective which was
examining how ES performs in comparison to GA on find-
ing network architectures. We found that ES initially out-
performed GA, and did even better when we decreased
population size and allowed it more generations to exper-
iment. We theorize that this is because ES needs more
generations for the candidate solution to adapt in the direc-
tion of each locally estimated gradient. Additionally, we
saw that we had not given GA the opportunity to have such
a high number of hidden units as the ES eventually used,
so adjusting the initial hidden unit range for GA (and using
binary encoding) resulted in GA performing slightly better
than ES. However, as both evolutionary algorithms came
to comparable accuracy, we conclude that they both can be
used effectively for hyperparameter optimization.

In a comparison of the two search techniques, we see that
ES and GA both have their own advantages and drawbacks.
In GA, it is necessary to find and set initial bounds on
the range of the hyperparameters, which takes both time
and experimentation. Allowing mutation outside the range
may slightly mitigate the problem, but the randomness of
mutation does not ensure a thorough exploration of hyper-
parameter space. In contrast, simple ES and NES both work
under the principle of calculating and following the esti-
mated gradient in the hyperparameter space. With simple
ES, the gradient is assumed to be in the direction of the best
performing network. In NES, the gradient is estimated by
evaluating the performance of all sampled networks. Thus,
both versions of ES can logically follow a gradient in hy-
perparameter space and do not require special initialization
to find an optima. However, ES still risks entrapment in a
local optima, as a bad initialization of the ES can cause a
candidate solution to follow a gradient into a suboptimal
architecture. Consequently, the GA over a wider area in
hyperparameter space may avoid such a suboptimal result.

In light of this analysis, we tried combining both the ES and
the GA to harness the strengths of each. In the penultimate
round of experiments, the combination of ES and GA did ac-
tually find the best network architecture. We then used this
architecture on the test set in the last experiment because
although we focused on hyperparameter optimization, the
underlying purpose of such hyperparameter optimization is
to find the best neural network architecture in the first place.
The network achieved relatively similar accuracy on test set
compared to the validation set, so the hyperparameter opti-
mization seems to have found a solution that can generalize
to unseen data. Overall, in our experiments we observed
that though ES and GA have different strengths and draw-
backs, they are both viable hyperparameter optimization
choices for neural networks.
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