
MLP Coursework 4: Painting Generation Using Conditional Generative
Adversarial Nets

s1789574, s1771229, s1782299

Abstract

We examined the use of modern Generative
Adversarial Nets to generate novel images of
oil paintings using the Painter By Numbers
dataset, in order to improve on previously
performed baseline experiments. We imple-
mented Spectral Normalization GAN (SN-
GAN) and Spectral Normalization GAN
with Gradient Penalty, and compared their
outputs to our baseline Deep Convolutional
GAN. Visually, and quantitatively according
to the Sliced Wasserstein Distance metric,
we determined that the SN-GAN produced
paintings that were most comparable to our
training dataset. We then performed a series
of experiments to attempt to add supervised
conditioning to SN-GAN, the culmination
of which is what we believe to be a novel ar-
chitecture that can generate faces with user-
specified characteristics.

1. Introduction

A motivation for this work can be given by Richard
Feynman, who once stated: “What I cannot create,
I do not understand.” Not only are Generative Ad-
versarial Networks capable of creating entirely new
data (such as images, text, or speech), they do so
in an adversarial manner. This adversarial training
enables the generative portion of the network to con-
tinually improve its representation of the true data
distribution (that it attempts to capture and generate)
until its outputs are indistinguishable from the real
data. The uses for generative models like these are
endless, ranging from image denoising, to video gen-
eration, to speech synthesis and recognition. Their
generative process can be thought of similarly to the
way the human brain dreams, imagines, and predicts.
Because generative models – especially ones adver-
sarially trained to near optimality – parameterize real
world data in order to generate new samples, they
tend to learn efficient, alternate representations of the
data, often leading to a deeper understanding.

The ultimate objective of our work was to train a
GAN conditioned on different attributes of paintings
in order to generate novel paintings that have speci-
fied attributes of our choosing (and in doing so, gain

an understanding of the intricacies of training GANs).
We believe that successful implementations of condi-
tional GANs could have a number of very interesting
applications in new and not heavily explored areas.
For example, they could be used by artists and other
creatives to aid in the idea generation process for new
projects, perhaps based on their own previous work
and work of other artists. In order to accomplish
this task, we first wanted to improve upon baseline
results previously achieved: since initial experiments
run using the DC-GAN architecture did not produce
‘paintings’ that were close to human indistinguish-
able from the training data, we set out to explore
recent state-of-the-art GAN architectures in order to
improve our results. This was especially important
due to the fact that conditioning our GAN on image
attributes effectively reduces the number of training
examples, as the data are now split per attribute.

More specifically, our initial goal was to create a
GAN using the techniques and architecture detailed
by Miyato et al. (2018) and measure its improvement
on our baseline. From there, in a further attempt to
improve our generated images, we wanted to add an
additional “gradient penalty" as specified by Gulra-
jani et al. (2017). We then aimed to add conditioning
to our best performing GAN architecture, as mea-
sured quantitatively by the sliced Wasserstein dis-
tance (SWD) between generated and real images, as
well as qualitatively via our own perception.

As with our prior experiments (Antonelli et al., 2018),
we focus on paintings in 4 categories while improving
our baselines: landscapes, flowers, portraits, and pre-
processed portraits (which we will call faces) – again
taken from the Painter by Numbers (PBN) dataset
(Duck, 2016). We chose to condition the paintings
– specifically the faces – on characteristics specified
by Microsoft’s Facial Recognition API1. In order to
improve the final quality of our generated conditional
images, we additionally used portraits taken from
the Behance Artistic Media (BAM) dataset (Wilber
et al., 2017).

The structure of this report is as follows. We first de-
tail the theory behind recent related works in Sec. 2.
From there, we describe the methodological under-
pinnings of our experiments in Sec. 3, after which we

1https://azure.microsoft.com/en-
gb/services/cognitive-services/face/



s1789574, s1771229, s1782299

discuss in detail our experiments and results in Sec .4.
In Sec. 5, we summarise our experimental results and
remark on our findings.

2. Related Work

Generative Adversarial Nets were proposed by Good-
fellow et al. (2014) and consist of 2 neural networks
with adversarial goals: a discriminative model D and
a generative model G. D is trained on images from
a ‘real’ distribution, and G, given random (usually
uniformly drawn) noise z, generates new images in
an attempt to trick D into classifying the images as
emanating from the real distribution. Thus, discrimi-
nator D’s goal is to give probabilities near 0 to images
generated by G, which we will call G(z); generator
G’s goal is to get D to assign its images probabilities
near 1. This amounts to a minimax game, with the
goal of the entire network to optimize the following
loss function:

min
G

max
D

L(D, G) = Ex∼pr

[
log(D(x)

]
+ Ex∼pg

[
log(1− D(x))

]
,

(1)

where pr is the real data distribution, pg is the gen-
erator’s learned distribution, and D(x) ∈ [0, 1] is
the classification by the discriminator. At the opti-
mal value for D, this loss function can be rewritten
to be in terms of the distance measure known as
Jensen-Shannon (JS) divergence between the real and
generated distributions (Goodfellow et al., 2014).

This original formulation of GANs (using the JS di-
vergence) was certainly groundbreaking, but suffers
from many problems during training, most notable
of which are:

• Mode collapse: the generator G learns a setting
of parameters wherein it only produces one im-
age. This successfully fools the discriminator,
but prevents G from learning the extent of the
real data distribution.

• Vanishing gradient: as the discriminator gets
better at discerning real versus generated images,
then D(x)→ 1 for images x drawn from pr and
D(x) → 0 for x ∼ pg. This causes the gradient
of Eq. 1 to go towards 0, and in the optimal
case where D is never wrong, the gradient is
0. So, if D improves too much, then learning
slows significantly or even stops. And on the
other hand, if D does not improve much, then G
cannot learn to make better images.

• No clear evaluation metric: since the true data
distribution pr is not known, and also calculating
the full distribution of pg is often not possible
(as with other generative models), there is no
one quantitative metric by which to evaluate the
generated images (Theis et al., 2015).

Salimans et al. (2016) suggested a series of improve-
ments to account for these issues, notably mini-batch
discrimination (wherein D looks at batches of gener-
ated images rather than one at a time) to help with
mode collapse, and label smoothing, wherein the
predictions of D are restricted so as not to get too
close to 1, in order to help the vanishing gradient
problem. Arjovsky & Bottou (2017) suggested adding
Gaussian noise to the inputs of D to further help with
the vanishing gradient problem. In a followup paper,
Arjovsky et al. (2017) proposed using the Wasserstein
(also known as Earth-Mover) distance as a metric by
which to evaluate the similarity between pr and pg:

W(pr, pg) = sup
‖ f‖L≤1

Ex∼pr

[
f (x)

]
−Ex∼pg

[
f (x)

]
,

(2)

where f is the discriminator (which maps from the
real image space to R) as long as

∥∥ f
∥∥

L ≤ 1 is satisfied.∥∥ f
∥∥

L ≤ 1 enforces f to be 1-Lipschitz continuous.
While the full consequences of 1-Lipschitz continuity
are outside the scope of this report, the main result
is that the Wasserstein distance between pr and pg
is constrained to be continuous and differentiable
nearly everywhere, with a well-behaved gradient. Eq.
2 can be reformulated into a loss function, which
forms the basis of the Wasserstein GAN (Arjovsky
et al., 2017):

L(pr, pg) = max
w∈W

Ex∼pr

[
fw(x)

]
−Ez∼p(z)

[
fw(G(z))

]
.

(3)
Here, the discriminator learns a function w that is 1-
Lipschitz continuous in order to compute the Wasser-
stein distance. The loss decreasing during training
corresponds to a reduction in the Wasserstein dis-
tance between pr and pg, and the generator produces
more realistic images.

In order to enforce the 1-Lipschitz constraint on the
discriminator, Arjovsky et al. (2017) simply clipped
the weights of the discriminator to small values, while
admitting that their solution has major faults and
could certainly be improved upon. Notably, Gulra-
jani et al. (2017) point out that without taking special
care to tune the bounds of the weight clipping, con-
vergence can be very slow, and the discriminator
could end up learning an overly simple function.

3. Methodology

To improve upon our prior baselines using DC-GAN,
before moving onto conditioning, we explored two re-
cently proposed methods of enforcing the 1-Lipschitz
constraint on the discriminator.

3.1. Spectral Normalization

We first explored Spectral Normalization, which also
enforces the 1-Lipschitz constraint by acting on the



s1789574, s1771229, s1782299

weights of the discriminator. However, rather than
simply clipping the weights in each layer to be small,
Miyato et al. (2018) normalize the spectral norm of the
weight matrix W at each layer in the discriminator.
Let σ(W) denote the largest singular value of W.
Miyato et al. (2018) then transform W:

W̄SN B
W

σ(W)
, (4)

such that σ(W̄SN) = 1, thus satisfying the 1-Lipschitz
constraint.

We used a TensorFlow implementation of Spec-
tral Normalization which was publicly available as
Python code on GitHub2. This served as a starting
point for quickly being able to get our experiments
off the ground.

The model architecture for Spectral Normalization
GANs (SN-GANs) is illustrated in Fig. 1. The slope
of all lReLU activations is set to 0.1.

(a) Generator. (b) Discriminator.

Figure 1. SN-GAN architecture (Miyato et al., 2018).

In an attempt to further improve our result, as sug-
gested by Miyato et al. (2018), we then sought to add
a secondary method to enforce 1-Lipschitz continuity
on the discriminator.

3.2. Gradient Penalty

Introduced by Gulrajani et al. (2017), the gradient
penalty enforces 1-Lipschitz continuity by adding a
regularizing term to the cost function of the GAN,
rather than altering the weights. Thus, to Eq. 3 a
regularizing term that penalizes large gradients is
added:

λ Ex̂∼px̂ [(
∥∥(∇x̂D(x̂)

)∥∥
2 − 1)2] (5)

where λ > 0 is a regularization coefficient and x̂ is a
weighted average between pairs of images in pr and
pg. It should be noted that the calculation of ∇x̂D(x̂)
requires an additional forward and backward pass
through the network, which we expect to increase
training time.

2https://github.com/minhnhat93/tf-SNDCGAN

Since spectral normalization and gradient penalty
act on different parts of the discriminator (on layer
weights and the gradient of the loss function, respec-
tively), Miyato et al. (2018) hypothesized and then
found that the two approaches could work in com-
plement.

We added the gradient penalty loss function to our
spectral normalization codebase, and ran experi-
ments using spectral normalization (SN) as well as
the combination of spectral normalization and gradi-
ent penalty (SNGP).

3.3. Conditioning

Once our original DC-GAN baselines were suffi-
ciently improved, we set out to condition GANs to
generate paintings with specific attributes that can
be manually specified. As an example, generating a
landscape or a portrait (as specified by the user) from
the same GAN. Or, generating paintings of faces with
specific attributes such as gender, emotion, or hair
color.

In order to condition GANs, we needed labels for
our data. For landscapes versus portraits, we used
the genre labels provided in the Painter By Numbers
metadata. For portraits, we decided to use Microsoft
Face API, which is a Machine Learning API that can
take images of persons as input, and return a JSON
of facial attributes such as age, hair color, gender,
emotion, facial hair, and more. We extracted im-
ages of faces from the portraits genre in Painter By
Numbers (using OpenCV, as described by Antonelli
et al. (2018)), and gathered attributes for each one
using Face API. However, these did not prove to be
sufficient during our conditioning experiments (see
Sec. 4.3.1), as we only had 3,269 extracted faces avail-
able. So we set out to augment our faces dataset using
the BAM dataset (Wilber et al., 2017), which provided
us with 21,965 oil paintings of people (though not
always with a clear face). Again using OpenCV, we
extracted 4,326 faces from the BAM paintings, and
also got facial attributes using Microsoft Face API.
This gave us a total of 7,595 face painting images
with facial attributes as labels. Finally, we augmented
our faces by flipping each one along the x-axis (hori-
zontally), thus doubling our face painting images to
15,190 in total – a number comparable to the number
of landscapes and un-preprocessed portraits origi-
nally available to us.3

Conditioning approaches for GANs use a new la-
bel vector, which is commonly referred to as the y
vector in literature. This label vector contains more
information about the data, such as certain attributes,

3Since, at this point in our experiments, quantitative
evaluation via SWD was no longer necessary, we believed
that the addition of new, previously unused data did not
compromise any prior results.



s1789574, s1771229, s1782299

that the GAN is trained on. It is necessary to have a
y with the same dimensionality for every datapoint
being used in training. For semi-supervised condi-
tioning, y can be uniform noise with dimension equal
to number of classes being conditioned. Or, y can be
one-hot encoding of the desired class labels for fully
supervised conditioning (Mirza & Osindero, 2014).

We decided to use one-hot encoding for supervised
conditioning, so we could provide a manual one-hot
encoded y vector (label) after training to produce a
specific type of painting. For example, for landscapes
and portraits, where y ∈ R2, y was a one-hot encod-
ing represented as [landscape, portrait] – y = [1, 0]
for all landscapes, and y = [0, 1] for all portraits. Sim-
ilarly for conditioning on faces, we created y to be
a one-hot encoding of the facial attributes gathered
from Face API. For our experiments we first used
all facial attributes provided through Face API (33 in
total), one-hot encoded into a y vector. But after some
difficulties in training (more details in Sec. 4.3.1), we
limited these attributes to 6: gender (male when gen-
der=1, female when gender=0), happiness, age from
0-9, black hair, blond hair, and facial hair. We picked
these attributes because they offered a large number
of samples available in our augmented faces data-
subset, and because we thought they provided easily
discernible visual distinctions.

There are a number of different conditioning ap-
proaches for GANs, meaning y can be introduced to
both the discriminator and the generator during train-
ing in a variety of ways. ‘Vanilla’ conditional GANs
(Mirza & Osindero, 2014) simply concatenate y to the
noise vector z being input to the generator, and y to
x being input to the discriminator, before z and x are
input to the first layers of each respectively. For deep
convolutional variants of GANs, some approaches
concatenate y to z for the input to the generator in
the same manner, but instead concatenate y to the
dense layer at the end of all the convolutional layers
(Gauthier, 2014; Reed et al., 2016). Other variants,
instead of putting y towards the end of the discrim-
inator, add y at the beginning of the discriminator –
by either tiling y with each filter after the first con-
volutional layer (Perarnau et al., 2016), or by adding
y as an input to a dense layer that is reshaped to
the height and width dimensions of the images and
then concatenated as a fourth channel to each of the
x (images input to the discriminator).

We experimented on all types of conditional GANs
mentioned above, and even combinations of the ap-
proaches, in an attempt to get conditioning to work.
First we tried conditioning on MNIST (LeCun et al.,
2010) as a proof-of-concept for conditioning using
the simple ‘vanilla’ conditional GAN. For our paint-
ing image data-subsets, we experimented with con-
ditioning using combined landscapes and portraits,
baseline faces (from just Painter By Numbers), and

eventually our augmented faces (Painter By Numbers
+ BAM) datasets. We believed that MNIST and then
landscape + portraits provided the clearest class dis-
tinctions within the dataset, making it an easier con-
ditioning task for the GAN. Once we got conditioning
working for those, we moved on to experimenting
with faces.

With each experiment, we observed the discriminator
and generator loss numbers through the course of
training. Additionally, our code produced an 8x8 grid
of generated images as training progressed, which
we also visually inspected. These allowed us to get an
idea of how our experiment was progressing over the
course of training. For the purpose of conditioning,
we made our generated samples consist of an easily
discernible 50-50 conditional split, depending on the
data-subset we were training on. For example, for
landscapes + portraits, we had the first half of the
our 8x8 grid contain landscapes, and the second half
portraits (the y passed into the generator for produc-
ing these samples had [landscape=1, portrait=0] for
the first half and then [landscape=0, portrait=1] for
the second half). For faces, we decided to split on the
gender attribute, so if conditioning was working, we
could observe the first half of our samples as faces of
males, and second half as faces of females.

3.4. Model Evaluation

In addition to visually comparing the results between
our models as we sought to improve upon our DC-
GAN baselines, we chose to use the Sliced Wasser-
stein Distance (SWD) as a quantitative evaluation
measure. SWD is an efficient approximation to the
Wasserstein distance, and effectively compares train-
ing and generated images in both appearance and
variation at different resolutions (Karras et al., 2017).
To do so, 100 images are generated and compared to
100 randomly selected images from the training data.
It should be noted that often many more samples
are taken in other literature, but this was not feasible
due to limited computational resources. As such, our
SWD numbers should not be compared to those from
other papers, but are still appropriate to compare
results of our own experiments. In our evaluations,
we report one SWD per model per painting category,
where the distances computed over resolutions of
128px, 64px, 32px, and 16px are averaged. A lower
average SWD means the GAN performed better in
generating images similar to the training data.

It should also be noted that our training images were
quite varied, even within classes. This is simply due
to the nature of the PBN dataset, which consists of
paintings (as opposed to many GAN papers which
use heavily pre-processed, real photographs such
as the CelebA dataset (Yang et al., 2015)). As such,
sometimes when examining our model outputs and
noting an example that, say, does not quite look like



s1789574, s1771229, s1782299

a landscape, the finding would be taken with a grain
of salt because there were many similar paintings
labeled as landscape in our training dataset.

4. Experiments

We trained both the SN and SNGP GANs described
above on subsets of the PBN dataset containing land-
scapes, flowers, portraits, and also faces extracted
from portraits. The images for each category we ex-
perimented on were center-cropped and reduced to
an equal height and width of 128px. A detailed de-
scription of the dataset can be found in Antonelli et al.
(2018). We performed experiments in the same order
and on the same subcategories as done in coursework
3, as our first objective was to be able to improve upon
those baseline experiments. The models were trained
for 100,000 iterations – we set the mini-batch size to
64, which means that our models were trained on
6.4 million images. All experiments used the Adam
learning rule. SN-GAN experiments used a learning
rate of 0.0002, β1 = 0.5, and β2 = 0.999 for Adam,
while SNGP-GAN experiments had a learning rate
of 5 · 10−5, β1 = 0, and β2 = 0.9 (Miyato et al., 2018).
The regularization parameter for gradient penalty, λ,
was set to be 1.

(a) DC-GAN (b) SN-GAN (c) SNGP-GAN

Figure 2. Comparison of landscapes generated with DC-
GAN, SN-GAN and SNGP-GAN.

4.1. Spectral Normalization

Spectral normalization led to a significant increase in
image quality on each of the image categories. Ini-
tially, results were self-evaluated visually. However,
we compared the best model for each subcategory
with SWD, as introduced in Sec. 3.4.

For flowers, DC-GAN experiments performed in
coursework 3 were not able to sufficiently learn the
data distribution. However, SN-GAN was able to
generate images of flowers that were visually quite
similar to the training images, even with only 1,606

training samples. This inspired confidence that condi-
tioning on image categories, despite effectively reduc-
ing the amount of training data, could still produce
believable images. Results and comparison for flow-
ers can be found in Fig. 3.

SN-GANs additionally had very good performance
on landscapes, portraits, and faces. Model perfor-

mances evaluated using SWD are shown in Table 1,
and samples of generated landscapes are shown in
Fig. 2.

(a) DC-GAN (b) SN-GAN (c) SNGP-GAN

Figure 3. Comparison of flowers generated with DC-GAN,
SN-GAN and SNGP-GAN.

4.2. Gradient Penalty

We again performed experiments on all the four im-
age categories, now adding the gradient penalty to
the SN loss function. This SNGP model was very ex-
pensive to train. As explained in 3.2, the computation
of the gradient norm lead to a significant increase
in training time. (In our experiments, training time
for SNGP-GANs was more than 5 times higher than
SN-GANs.) Results better than both DC-GAN and
SN-GAN were expected; however, this was not the
case. The model outperformed our DC-GAN base-
line, but its images were clearly worse than without
the gradient penalty for all categories except flowers.
We suspect that with more hyperparameter tuning,
the model performance could be improved to be at
least as good as SN-GAN. However, due to the lim-
ited time and computational resources, and given
training time needed for SNGP-models, we decided
to take SN-GAN as our best model on which to per-
form conditioning. Comparison of samples generated
from the three models can be found in Fig. 2 and Fig.
3, while performances evaluated through SWD are in
Table 1.

Dataset DC-GAN SN SNGP

landscapes 69.873 37.888 42.528

portraits 117.377 58.190 72.032

flowers 84.299 42.457 33.973

faces 67.308 35.779 42.724

Table 1. SWD distance x103.

4.3. Conditioning

4.3.1. Initial Conditioning Experiments

We thought it would be appropriate to start out sim-
ple and first condition GANs on MNIST as a proof-of-
concept, by replicating the work of Mirza & Osindero
(2014). In this case our y vector (the conditioning
label) was a one-hot encoding of the digit labels with
y ∈ R10. We trained a simple conditional GAN with



s1789574, s1771229, s1782299

no convolutional layers and only a single hidden
layer in both the discriminator and generator, as de-
scribed by Mirza & Osindero (2014), and the same
hyperparameter settings. More details about how the
y vector was introduced to this GAN are in Sec. 3.3.
After training, we were able to successfully have the
generator produce a specific digit by providing it a
one-hot encoded y for the desired digit. Both the
generator and discriminator losses were observed to
be steady around 1.0 through the course of training.

We then tried the landscapes + portraits data-subset
on the same vanilla conditional GAN architecture,
but received very poor results. Both the generator
and discriminator losses fluctuated wildly through
training, and the generated samples were mostly
noise. We attributed this to the fact that the vanilla
conditional GAN architecture is too simple for com-
plex images – it has no convolutional layers which
have been repeatedly shown to perform well in image
processing in deep learning.

We believed that to get a conditional GAN trained
on images more complex than MNIST, we needed
convolutional layers in both the discriminator and
generator. So we turned to our SN-GAN architecture,
which contains convolutional layers in the discrimi-
nator and generator (see Fig. 1), to add conditioning.
Our first conditioning attempt was to start simple
and concatenate y to z for the input to the generator
as in the vanilla conditional GAN, and y to the dense
layer at the end of all the convolutional layers in the
discriminator (Gauthier, 2014; Reed et al., 2016). This
did not work. We observed that the discriminator loss
would drop to almost 0.0, while the generator loss
would continually increase (to 10.0 or more), starting
from early on in training. Fig. 4 shows plots of these
D and G losses. The samples generated were those
of landscapes and portraits, but of lower quality, and
they were randomly placed in our sample grids (as
described in Sec. 3.3, the first half of our 8x8 samples
grid were set to be landscapes and second half to be
portraits, which is what we should have observed).

0 20000 40000 60000 80000 100000
iteration

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

lo
ss

Discriminator

0 20000 40000 60000 80000 100000
iteration

0

2

4

6

8

10

12

14

lo
ss

Generator

Figure 4. Discriminator and Generator losses plotted over
training iterations for a failed experiment with a conditional
GAN architecture we tried in earlier experiments. Training
was stopped early due to limited time, limited resources,
and poor progression of training.

As an alternate approach, we then projected the y

vector through a dense layer, and reshaped it into a
fourth channel added to each image being input to
the discriminator (Sec. 3.3). Furthermore, we decided
to keep y at the end of the discriminator after the
convolutional layers as well, in order to ensure the la-
bels reach the end of the discriminator unaltered, and
also increase the gradient signal. Hence y was added
both at the beginning and at the end of the discrimi-
nator, before and after the convolutional layers. This
approach also failed to work for our landscapes +
portraits conditioning task. Again, the discriminator
loss would drop very close to 0.0 and generator loss
would continually increase (to 10.0 or more) from
early on in the training.

We then investigated an approach that replicates and
then concatenates y to each filter after the 1st convolu-
tional layer in the discriminator (Perarnau et al., 2016).
We added this to the discriminator in our SN-GAN
architecture, again keeping y at the end of the dis-
criminator after the convolutional layers as well. The
generator remained the same, with y concatenated
to the z noise vector being fed in at the beginning of
the generator. A diagram of this conditional GAN
architecture can be seen in Fig. 5.

Figure 5. Our conditional GAN architecture.

This conditioning architecture worked on the land-
scapes + portraits conditioning task. The generator
was able to produce images conditionally based on
y. In this case, our samples grid mostly contained
landscapes in the first half, and mostly contained
portraits in the second half. An example of this grid
(with increased number of samples) can be seen in
Fig. 6. We also observed that our loss numbers were
mostly stable – they did slowly approach 0.0 for the
discriminator and 10.0+ for the generator, but at a
much slower rate and later in training compared to
the prior failed conditioning experiments for land-
scape + portraits. These losses are plotted in Fig. 7.



s1789574, s1771229, s1782299

Figure 6. A grid of samples generated using our conditional
GAN architecture. y set to landscapes for top half of the
grid, and portraits for the bottom half.

0 20000 40000 60000 80000 100000
iteration

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

lo
ss

Discriminator

0 20000 40000 60000 80000 100000
iteration

0

2

4

6

8

10

12

14

lo
ss

Generator

Figure 7. Discriminator and Generator losses plotted over
training iterations for a successful experiment with our
conditional GAN architecture.

4.3.2. Conditioning on Faces

Our goal after getting conditioning to work on land-
scapes + portraits was to try it on the images of
faces extracted from all of the portrait paintings in
Painter By Numbers (Antonelli et al., 2018). Our
y for each image was a one-hot encoding of facial
attributes collected from Face API, as described in
Sec. 3.3. We started experimenting with conditioning
on all 33 facial attributes available to us, but this did
not work – the generated samples throughout train-
ing were mostly noise, and loss numbers were highly
abnormal compared to those of our successful land-
scapes + portraits conditioning experiment (Fig. 7).
We concluded that this could be due to the fact that
there were too many attributes in y, which split our
data into too few datapoints available per attribute.
In comparison, our successful landscapes + portraits
conditioning experiment only had two attributes, and
around the same number of data points for each. We
narrowed down to 6 attributes for reasons mentioned
in our Sec. 3 – namely: gender, happiness, age 0-9,
black hair, blond hair, facial hair. Training on these,
with y ∈ R6 instead of y ∈ R33, we observed im-
proved results. The generated samples had better
quality visually, and the loss numbers were better
than the experiment with all 33 attributes. However,

the samples did not look as good visually at any point
during training as they did when we experimented
on generating faces without conditioning. Addition-
ally, the GAN would eventually collapse into a single
point before results improved – see Fig. 8, although it
can be observed that the GAN did learn conditioning,
as the first half of the samples grid is mostly male
and the second half mostly female.

Figure 8. Collapsed conditional GAN being trained on
paintings of face images.

We concluded that our conditioning experiments
were failing on the extracted faces for a couple rea-
sons. Paintings of people’s faces did not present
as much diversity in the distribution of data when
compared to landscapes vs portraits. This made for
a more difficult task for the conditional GAN. Ad-
ditionally, we did not have as many datapoints for
faces available. We had 15,005 images of landscape
paintings, and 16,846 images of portrait paintings,
giving us a combined total 31,851 for the landscapes
+ portraits conditional GAN task, split among 2 at-
tributes. This was in stark contrast to a total of 3,269

images of extracted faces, split among 6 attributes.
Hence we decided to augment our faces data-subset,
as described in detail in Section 3.3. We then set out
with 15,190 total augmented images of oil paintings
of faces, with conditioning labels (6 attributes per im-
age). We used our same successful conditional GAN
architecture from the landscapes + portraits experi-
ment (Fig. 5), and were able to successfully condition
on the attributes, but with some caveats.

For full-sized augmented face images of 128px x
128px, or half-sized augmented face images of 64px x
64px, our conditioning experiments would fail during
training. The discriminator loss would quickly get
very close to 0.0, whereas the generator loss would
quickly jump up to 10.0+, and the generator would
collapse into a single point, as observed in prior ex-
periments. But when we reduced the image sizes
further to 32px x 32px, our experiment succeeded.
We noted loss numbers that were more stable than
for larger images, and generated samples that were
of decent visual quality.

We concluded from these experiments, observing the



s1789574, s1771229, s1782299

loss for the discriminator always ending up close
to 0.0, that the discriminator was too powerful and
would overfit, making it difficult for the generator to
learn anything new. But for smaller images (32px x
32px), there was less to learn in comparison to the
larger ones (64px x 64px or greater), so the generator
was able to learn the distribution of images quicker,
before the discriminator would overfit. So we set
out to tune the discriminator to make it less confi-
dent, allowing the generator more room to learn to
produce better results for conditional generation of
larger images.

Salimans et al. (2016) suggest label smoothing in the
discriminator, wherein the positive labels (D(x) = 1)
are replaced with a constant α < 1. In our case, we
set α = 0.9. Additionally, Arjovsky & Bottou (2017)
suggest adding Gaussian noise to the inputs to the
discriminator (to both the real images from the train-
ing dataset, and fake images from the generator),
as covered in Sec. 2. We added zero-mean Gaus-
sian noise with variance σ2 = 0.5. Finally, Salimans
et al. (2016) performed successful GAN training with
dropout added to each layer of the discriminator. We
added dropout (with rate 0.5) to each layer, including
the input of the discriminator. These improvements
resulted in successful training on larger images.

(a) Black haired
females

(b) Blond haired
females

(c) Black haired
males with facial
hair

Figure 9. Samples of faces generated using our conditional
GAN architecture trained on images paintings of faces, and
facial attribute labels from Microsoft Face API.

Our conditional GAN architecture, with the added
adjustments to the discriminator, trained on the aug-
mented faces dataset resized to 64px x 64px, was able
to produce visually distinguishable paintings of faces
with conditional attributes that were manually spec-
ified. When generating a sample, y could be set to
the desired conditional attributes, and passed in with
z to the generator. For example, to produce paint-
ings of blond females, we set y = [gender=0, happi-
ness=randint(0,1), age_0-9=randint(0,1), black_hair=0,
blond_hair=1, facial_hair=0]. Sample conditional im-
ages can be seen in Fig. 9. A live demonstration of
this pre-trained conditional GAN model can be seen
at http://adeel.io/sncgan.

5. Conclusions

We performed a series of experiments with the end
goal of creating a GAN conditioned on certain im-
age attributes. To do so, we first experimented with
several different GAN architectures in order to both
learn about the intricacies of their training, and find
the optimal architecture on which to apply condition-
ing. Using paintings of landscapes, flowers, portraits,
and extracted faces for training, we compared 3 differ-
ent modern GAN architectures: Deep Convolutional
(DC) GAN, Spectral Normalization (SN) GAN, and
Spectral Normalization GAN with Gradient Penalty
(SNGP). Both visually and via the Sliced Wasserstein
Distance, we found that SN-GAN was the best per-
forming of our models.

From there we attempted several different approaches
found in literature for conditioning GANs on image
attributes in a supervised manner. Ultimately, we
found a suitable method for attaching the attribute
labels (as shown in Fig. 5), and created a GAN ca-
pable of producing paintings of faces with specified
attributes such as gender or hair color.

This process showed us firsthand the difficulties of
training GANs, even with the many recent advances
specifically aimed to improve their training. We also
saw the incredible power behind deep generative
models, despite these difficulties. Research on GANs
is exploding as of this writing, and the number of
novel tasks to which they can be successfully (and
usefully) applied keeps growing. We successfully
implemented conditioning on a very modern GAN
architecture (and will continue to improve our model
and update the website linked above), but more im-
portantly we gained an intimate understanding of
some of the intricacies of Generative Adversarial Net-
works.

5.1. Future Work

In future work, it may be useful to perform more
extensive hyperparameter tuning to further improve
performance. Hyperparameters such as learning rate,
β1, and β2 for Adam, and mini-batch size could be
tuned. And Gaussian noise variance, dropout rate,
and α for label smoothing could all be further tuned
in the discriminator.

Our successful conditioning experiments were per-
formed on 64px x 64px images of paintings of faces.
Conditioning on full size images from the same
dataset (128px x 128px) could be explored, and may
produce good results given the additional adjust-
ments made to the discriminator (Sec. 4.3.1). The
same GAN architecture could be tried on real pho-
tographs such as those from the CelebA dataset (Yang
et al., 2015), which we predict may yield better re-
sults than those for paintings given the consistency
of samples in the dataset.

http://adeel.io/sncgan


s1789574, s1771229, s1782299

References
Antonelli, Biagio, Monello, Julius, and Mufti, Adeel.

Painting generation using deep convolutional gen-
erative adversarial nets. University of Edinburgh,
Machine Learning Practical Coursework 3, 2018.

Arjovsky, Martin and Bottou, Léon. Towards princi-
pled methods for training generative adversarial
networks. arXiv preprint arXiv:1701.04862, 2017.

Arjovsky, Martin, Chintala, Soumith, and Bot-
tou, Léon. Wasserstein gan. arXiv preprint
arXiv:1701.07875, 2017.

Duck, Small Yellow. Painter by numbers, wikiart. org,
2016.

Gauthier, Jon. Conditional generative adversarial nets
for convolutional face generation. Class Project for
Stanford CS231N: Convolutional Neural Networks for
Visual Recognition, Winter semester, 2014(5):2, 2014.

Goodfellow, Ian, Pouget-Abadie, Jean, Mirza, Mehdi,
Xu, Bing, Warde-Farley, David, Ozair, Sherjil,
Courville, Aaron, and Bengio, Yoshua. Generative
adversarial nets. In Advances in neural information
processing systems, pp. 2672–2680, 2014.

Gulrajani, Ishaan, Ahmed, Faruk, Arjovsky, Martin,
Dumoulin, Vincent, and Courville, Aaron C. Im-
proved training of wasserstein gans. In Advances
in Neural Information Processing Systems, pp. 5769–
5779, 2017.

Karras, Tero, Aila, Timo, Laine, Samuli, and Lehti-
nen, Jaakko. Progressive growing of gans for
improved quality, stability, and variation. arXiv
preprint arXiv:1710.10196, 2017.

LeCun, Yann, Cortes, Corinna, and Burges, CJ. Mnist
handwritten digit database. AT&T Labs [Online].
Available: http://yann. lecun. com/exdb/mnist, 2, 2010.

Mirza, Mehdi and Osindero, Simon. Conditional
generative adversarial nets. CoRR, abs/1411.1784,
2014. URL http://arxiv.org/abs/1411.1784.

Miyato, Takeru, Kataoka, Toshiki, Koyama, Masanori,
and Yoshida, Yuichi. Spectral normalization for
generative adversarial networks. arXiv preprint
arXiv:1802.05957, 2018.

Perarnau, Guim, van de Weijer, Joost, Raducanu, Bog-
dan, and Álvarez, Jose M. Invertible conditional
gans for image editing. CoRR, abs/1611.06355, 2016.
URL http://arxiv.org/abs/1611.06355.

Reed, Scott, Akata, Zeynep, Yan, Xinchen, Lo-
geswaran, Lajanugen, Schiele, Bernt, and Lee,
Honglak. Generative adversarial text to image syn-
thesis. arXiv preprint arXiv:1605.05396, 2016.

Salimans, Tim, Goodfellow, Ian, Zaremba, Wojciech,
Cheung, Vicki, Radford, Alec, and Chen, Xi. Im-
proved techniques for training gans. In Advances
in Neural Information Processing Systems, pp. 2234–
2242, 2016.

Theis, Lucas, Oord, Aäron van den, and Bethge,
Matthias. A note on the evaluation of generative
models. arXiv preprint arXiv:1511.01844, 2015.

Wilber, Michael J., Fang, Chen, Jin, Hailin, Hertz-
mann, Aaron, Collomosse, John, and Belongie,
Serge. Bam! the behance artistic media dataset
for recognition beyond photography. In The IEEE
International Conference on Computer Vision (ICCV),
Oct 2017.

Yang, Shuo, Luo, Ping, Loy, Chen-Change, and Tang,
Xiaoou. From facial parts responses to face detec-
tion: A deep learning approach. In Proceedings of
the IEEE International Conference on Computer Vision,
pp. 3676–3684, 2015.

http://arxiv.org/abs/1411.1784
http://arxiv.org/abs/1611.06355

