
Deep Neural Networks (2)

ReLU layers; Generalisation and Regularisation

Hakan Bilen

Machine Learning Practical — MLP Lecture 4

8 October 2019

MLP Lecture 4 / 8 October 2019 Deep Neural Networks (2) 1

Recap: Training multi-layer networks

Outputs

g
(3)
1 g

(3)
` g

(3)
K

Hidden

Hidden

y1 y` yK

w
(3)
1k

w
(3)
`k

w
(3)
Kk

w
(2)
1j

w
(2)
kj

w
(2)
Hj

h
(2)
Hh

(2)
k

h
(2)
1

g
(2)
1 g

(2)
k

g
(2)
H

h
(1)
j

w
(1)
ji

g
(1)
j

xi
Inputs

g
(2)
k =

 X

m

g(3)
m wmk

!
h

(2)
k (1 � h

(2)
k)

@En

@w
(2)
kj

= g
(2)
k h

(1)
j

AffineLayer.fprop

AffineLayer.fprop

AffineLayer.fprop

SigmoidLayer.fprop

SigmoidLayer.fprop

AffineLayer.bprop

AffineLayer.bprop

SigmoidLayer.bprop

SigmoidLayer.bprop

CrossEntropySoftmaxError.grad

MLP Lecture 4 / 8 October 2019 Deep Neural Networks (2) 2

Are there alternatives
to Sigmoid Hidden Units?

Sigmoid function

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a

g(
a)

Logistic sigmoid activation function g(a) = 1/(1+exp(−a))

tanh

tanh(x) =
ex − e−x

ex + e−x

sigmoid(x) =
1 + tanh(x/2)

2

Derivative:

d

dx
tanh(x) = 1− tanh2(x)

MLP Lecture 4 / 8 October 2019 Deep Neural Networks (2) 3

tanh hidden units (TanhLayer)

• tanh has same shape as sigmoid but

has output range ±1

• Results about approximation capability

using sigmoid layers also apply to tanh

layers

• Possible reason to prefer tanh over

sigmoid: allowing units to be positive

or negative allows gradient for weights

into a hidden unit to have a different

sign

• Saturation still a problem

Hidden

Hidden

h
(2)
H

h
(2)
kh

(2)
1

g
(2)
k

h
(1)
jh

(1)
1

h
(1)
H

MLP Lecture 4 / 8 October 2019 Deep Neural Networks (2) 4

Rectified Linear Unit – ReLU

relu(x) = max(0, x)

Derivative:

d

dx
relu(x) =

0 if x ≤ 0

1 if x > 0

MLP Lecture 4 / 8 October 2019 Deep Neural Networks (2) 5

ReLU hidden units (ReluLayer)

• Similar approximation results to tanh and sigmoid hidden units

• Empirical results for speech and vision show consistent improvements using relu

over sigmoid or tanh

• Unlike tanh or sigmoid there is no positive saturation – saturation results in very

small derivatives (and hence slower learning)

• Negative input to relu results in zero gradient (and hence no learning)

• Relu is computationally efficient: max(0, x)

• Relu units can “die” (i.e. respond with 0 to everything)

• Relu units can be very sensitive to the learning rate

MLP Lecture 4 / 8 October 2019 Deep Neural Networks (2) 6

ReLU Variants: Leaky and Parametric ReLU

-4 -3 -2 -1 0 1 2 3 4
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

y= x

y=x

LeakyReLU(x) =

αx if x ≤ 0

x if x > 0

Derivative:

d

dx
LeakyReLU(x) =

α if x ≤ 0

1 if x > 0

MLP Lecture 4 / 8 October 2019 Deep Neural Networks (2) 7

ReLU Variants: Leaky and Parametric ReLU

• Leaky ReLU has a small predetermined slope for negative values, y = αx (e.g.

α = 0.01)

• Parametric ReLU (PReLU) is a type of Leaky ReLU but α is learned during

training

• It fixes the “dying ReLU” problem, no saturation for x < 0

• Gradient is not sparse

• Not always superior to ReLU

MLP Lecture 4 / 8 October 2019 Deep Neural Networks (2) 8

Generalisation

Generalization

• Generalization:

• what is the expected error on a test set?

• how to compare the accuracy of different networks trained on the same data?

• Causes of error

• Network too flexible: Too many weights compared with number of training examples

• Network not flexible enough: Not enough weights (hidden units) to represent the

desired mapping

When comparing models, it can be helpful to compare systems with the same

number of trainable parameters (i.e. the number of trainable weights in a neural

network)

• Optimizing training set performance does not necessarily optimize test set

performance....

MLP Lecture 4 / 8 October 2019 Deep Neural Networks (2) 9

Training / Test / Validation Data

• Partitioning the data...

• Training data – data used for training the network

• Validation data – frequently used to measure the error of a network on “unseen”

data (e.g. after each epoch)

• Test data – less frequently used “unseen” data, ideally only used once

• Frequent use of the same test data can indirectly “tune” the network to that data

(e.g. by influencing choice of hyperparameters such as learning rate, number of

hidden units, number of layers,)

MLP Lecture 4 / 8 October 2019 Deep Neural Networks (2) 10

Measuring generalisation

• Generalization Error – The predicted error on unseen data. How can the
generalization error be estimated?

• Training error?

Etrain = −
∑

training set

K∑

k=1

tnk ln yn
k

• Validation error?

Eval = −
∑

validation set

K∑

k=1

tnk ln yn
k

MLP Lecture 4 / 8 October 2019 Deep Neural Networks (2) 11

Cross-validation

• Optimize network performance given a fixed training set

• Hold out a set of data (validation set) and predict generalization performance on
this set

1. Train network in usual way on training data

2. Estimate performance of network on validation set

• If several networks trained on the same data, choose the one that performs best

on the validation set (not the training set)

• n-fold Cross-validation: divide the data into n partitions; select each partition in

turn to be the validation set, and train on the remaining (n − 1) partitions.

Estimate generalization error by averaging over all validation sets.

MLP Lecture 4 / 8 October 2019 Deep Neural Networks (2) 12

Overtraining

• Overtraining corresponds to a network function too closely fit to the training set

(too much flexibility)

• Undertraining corresponds to a network function not well fit to the training set

(too little flexibility)

• Solutions

• If possible increasing both network complexity in line with the training set size

• Use prior information to constrain the network function

• Control the flexibility: Structural Stabilization

• Control the effective flexibility: early stopping and regularization

MLP Lecture 4 / 8 October 2019 Deep Neural Networks (2) 13

Structural Stabilization

Directly control the number of weights:

• Compare models with different numbers of hidden units

• Start with a large network and reduce the number of weights by pruning individual

weights or hidden units

• Weight sharing — use prior knowledge to constrain the weights on a set of

connections to be equal.

→ Convolutional Neural Networks

MLP Lecture 4 / 8 October 2019 Deep Neural Networks (2) 14

Lab 4: 04 Generalisation and overfitting

Lab 4 explores overfitting and how we can measure how well the models we train

generalise their predictions to unseen data.

• Setting up a 1-dimension regression problem

• Using a radial basis functions (RBF) network as a model for this problem

• Exploring the behaviour of the RBF network as the number of model parameters

(basis functions) increases

MLP Lecture 4 / 8 October 2019 Deep Neural Networks (2) 15

Early Stopping

• Use validation set to decide when to stop training

• Training Set Error monotonically decreases as training progresses

• Validation Set Error will reach a minimum then start to increase

• Best generalization predicted to be at point of minimum validation set error

• “Effective Flexibility” increases as training progresses

• Network has an increasing number of “effective degrees of freedom” as training

progresses

• Network weights become more tuned to training data

• Very effective — used in many practical applications such as speech recognition

and optical character recognition

MLP Lecture 4 / 8 October 2019 Deep Neural Networks (2) 16

Early Stopping

• Use validation set to decide when to stop training

• Training Set Error monotonically decreases as training progresses

• Validation Set Error will reach a minimum then start to increase

• Best generalization predicted to be at point of minimum validation set error

• “Effective Flexibility” increases as training progresses

• Network has an increasing number of “effective degrees of freedom” as training

progresses

• Network weights become more tuned to training data

• Very effective — used in many practical applications such as speech recognition

and optical character recognition

MLP Lecture 4 / 8 October 2019 Deep Neural Networks (2) 16

Early Stopping

• Use validation set to decide when to stop training

• Training Set Error monotonically decreases as training progresses

• Validation Set Error will reach a minimum then start to increase

• Best generalization predicted to be at point of minimum validation set error

Validation

Training

E

tt*

• “Effective Flexibility” increases as training progresses

• Network has an increasing number of “effective degrees of freedom” as training

progresses

• Network weights become more tuned to training data

• Very effective — used in many practical applications such as speech recognition

and optical character recognition

MLP Lecture 4 / 8 October 2019 Deep Neural Networks (2) 16

Early Stopping

• Use validation set to decide when to stop training

• Training Set Error monotonically decreases as training progresses

• Validation Set Error will reach a minimum then start to increase

• Best generalization predicted to be at point of minimum validation set error

• “Effective Flexibility” increases as training progresses

• Network has an increasing number of “effective degrees of freedom” as training

progresses

• Network weights become more tuned to training data

• Very effective — used in many practical applications such as speech recognition

and optical character recognition

MLP Lecture 4 / 8 October 2019 Deep Neural Networks (2) 16

Early Stopping

• Use validation set to decide when to stop training

• Training Set Error monotonically decreases as training progresses

• Validation Set Error will reach a minimum then start to increase

• Best generalization predicted to be at point of minimum validation set error

Validation

Training

E

tt*

• “Effective Flexibility” increases as training progresses

• Network has an increasing number of “effective degrees of freedom” as training

progresses

• Network weights become more tuned to training data

• Very effective — used in many practical applications such as speech recognition

and optical character recognition

MLP Lecture 4 / 8 October 2019 Deep Neural Networks (2) 16

Early Stopping

• Use validation set to decide when to stop training

• Training Set Error monotonically decreases as training progresses

• Validation Set Error will reach a minimum then start to increase

• Best generalization predicted to be at point of minimum validation set error

Validation

Training

E

tt*

• “Effective Flexibility” increases as training progresses

• Network has an increasing number of “effective degrees of freedom” as training

progresses

• Network weights become more tuned to training data

• Very effective — used in many practical applications such as speech recognition

and optical character recognition

Why does early stopping
improve generalisation?

MLP Lecture 4 / 8 October 2019 Deep Neural Networks (2) 16

Generalisation by design

• Regularisation – penalise the weights: L1 (sparsity), L2 (weight decay)

• Data augmentation – generate additional (noisy) training data

• Model combination – smooth together multiple networks

• Dropout – randomly delete a fraction of hidden units each minibatch

• Parameter sharing – e.g. convolutional networks

MLP Lecture 4 / 8 October 2019 Deep Neural Networks (2) 17

Weight Decay (L2 Regularisation)

• Weight decay puts a “spring” on weights

• If training data puts a consistent force on a weight, it will outweigh weight decay

• If training does not consistently push weight in a direction, then weight decay will

dominate and weight will decay to 0

• Without weight decay, weight would walk randomly without being well determined

by the data

• Weight decay can allow the data to determine how to reduce the effective number

of parameters

MLP Lecture 4 / 8 October 2019 Deep Neural Networks (2) 18

Penalizing Complexity

• Consider adding a complexity term Ew to the network error function, to encourage

smoother mappings:

En = En
train︸ ︷︷ ︸

data term

+ βEW︸ ︷︷ ︸
prior term

• Etrain is the usual error function:

En
train = −

K∑

k=1

tnk ln yn
k

• EW should be a differentiable flexiblity/complexity measure, e.g.

EW = EL2 =
1

2

∑

i

w2
i

∂EL2

∂wi
= wi

MLP Lecture 4 / 8 October 2019 Deep Neural Networks (2) 19

Penalizing Complexity

• Consider adding a complexity term Ew to the network error function, to encourage

smoother mappings:

En = En
train︸ ︷︷ ︸

data term

+ βEW︸ ︷︷ ︸
prior term

• Etrain is the usual error function:

En
train = −

K∑

k=1

tnk ln yn
k

• EW should be a differentiable flexiblity/complexity measure, e.g.

EW = EL2 =
1

2

∑

i

w2
i

∂EL2

∂wi
= wi

MLP Lecture 4 / 8 October 2019 Deep Neural Networks (2) 19

Penalizing Complexity

• Consider adding a complexity term Ew to the network error function, to encourage

smoother mappings:

En = En
train︸ ︷︷ ︸

data term

+ βEW︸ ︷︷ ︸
prior term

• Etrain is the usual error function:

En
train = −

K∑

k=1

tnk ln yn
k

• EW should be a differentiable flexiblity/complexity measure, e.g.

EW = EL2 =
1

2

∑

i

w2
i

∂EL2

∂wi
= wi

MLP Lecture 4 / 8 October 2019 Deep Neural Networks (2) 19

Gradient Descent Training with Weight Decay

∂En

∂wi
=
∂(En

train + EL2)

∂wi
=

(
∂En

train

∂wi
+ β

∂EL2

∂wi

)

=

(
∂En

train

∂wi
+ βwi

)

∆wi = −η
(
∂En

train

∂wi
+ βwi

)

• Weight decay corresponds to adding EL2 = 1/2
∑

i w2
i to the error function

• Addition of complexity terms is called regularisation

• When used with gradient descent, weight decay corresponds to L2 regularisation

MLP Lecture 4 / 8 October 2019 Deep Neural Networks (2) 20

L1 Regularisation

• L1 Regularisation corresponds to adding a term based on summing the absolute

values of the weights to the error:

En = En
train︸ ︷︷ ︸

data term

+ βEn
L1︸ ︷︷ ︸

prior term

= En
train + β|wi |

• Gradients
∂En

∂wi
=
∂En

train

∂wi
+ β

∂EL1

∂wi

=
∂En

train

∂wi
+ β sgn(wi)

Where sgn(wi) is the sign of wi :

sgn(wi) = 1 if wi > 0 and sgn(wi) = −1 if wi < 0

MLP Lecture 4 / 8 October 2019 Deep Neural Networks (2) 21

L1 vs L2

• L1 and L2 regularisation both have the effect of penalising larger weights

• In L2 they shrink to 0 at a rate proportional to the size of the weight (βwi)

• In L1 they shrink to 0 at a constant rate (β sgn(wi))

• Behaviour of L1 and L2 regularisation with large and small weights:

• when |wi | is large L2 shrinks faster than L1

• when |wi | is small L1 shrinks faster than L2

• So L1 tends to shrink some weights to 0, leaving a few large important

connections – L1 encourages sparsity

• ∂EL1/∂w is undefined when w = 0; assume it is 0 (i.e. take sgn(0) = 0 in the

update equation)

MLP Lecture 4 / 8 October 2019 Deep Neural Networks (2) 22

Data Augmentation – Adding “fake” training data

• Generalisation performance goes with the amount of training data (change

MNISTDataProvider to give training sets of 1 000 / 5 000 / 10 000 examples to

see this)

• Given a finite training set we could create further training examples...

• Create new examples by making small rotations of existing data

• Add a small amount of random noise

• Using “realistic” distortions to create new data is better than adding random noise

MLP Lecture 4 / 8 October 2019 Deep Neural Networks (2) 23

Model Combination

• Combining the predictions of multiple models can reduce overfitting

• Model combination works best when the component models are complementary –

no single model works best on all data points
• Creating a set of diverse models

• Different NN architectures (number of hidden units, number of layers, hidden unit

type, input features, type of regularisation, ...)

• Different models (NN, SVM, decision trees, ...)

• How to combine models?
• Average their outputs

• Linearly combine their outputs

• Train another “combiner” neural network whose input is the outputs of the

component networks

• Architectures designed to create a set of specialised models which can be combined

(e.g. mixtures of experts)

MLP Lecture 4 / 8 October 2019 Deep Neural Networks (2) 24

Lab 5: 05 Regularisation

Lab 5 explores different methods for regularising networks to reduce overfitting and

improve generalisation

In the context of a feed-forward network using ReLU hidden layers, the lab explores

• L1 and L2 regularisation

• Data augmentation

MLP Lecture 4 / 8 October 2019 Deep Neural Networks (2) 25

Summary

• ReLU and its variants

• Generalisation and overfitting
• Preventing overfitting

• L2 regularisation – weight decay

• L1 regularisation – sparsity

• Creating additional training data

• Model combination

• Reading:
• Nielsen, chapter 3 (section on overfitting and regularization) of Neural Networks and

Deep Learning

http://neuralnetworksanddeeplearning.com/chap3.html#overfitting_

and_regularization

• Goodfellow et al, chapter 7 Deep Learning (sections 7.1–7.5)

http://www.deeplearningbook.org/contents/regularization.html

MLP Lecture 4 / 8 October 2019 Deep Neural Networks (2) 26

http://neuralnetworksanddeeplearning.com/chap3.html#overfitting_and_regularization
http://neuralnetworksanddeeplearning.com/chap3.html#overfitting_and_regularization
http://www.deeplearningbook.org/contents/regularization.html

