An introduction to
neural network
compression

Elliot J. Crowley

School of Informatics, University of
Edinburgh

The appeal of small
networks

* Convolutional Neural Networks are
pretty good (and definitely not
overhyped, see robot)

* The winner of the 2017 ImageNet
Challenge was an ensemble of 115-
million parameter Squeeze-Excite nets

* Good luck fitting this on your
smartwatch

 Smaller networks allow for faster
inferences for real-time applications

w

\

- i 2
ww.tg‘ﬁ ator
H ::rur-muu NS HATCRML 15 57

. A7

How do we do make our networks smaller?

* Architecture design

* Neural network pruning

* Network distillation

Don’t use big
fully

connected
layers!

params

4M
16M
37M

442K
1.3M
884K

307K

35K

4

AlexNet

FC 1000

FC 4096 / ReLU

FC 4096 / ReLU

Max Pool 3x3s2

Conv 3x3s1, 256 / RelLU

Conv 3x3s1, 384 / ReL,U

Conv 3x3s1, 384 / RelLU

Max Pool 3x3s2

Local Response Norm

Conv 5x5s1, 256 / ReLU

Max Pool 3x3s2

Local Response Norm

Conv 11x11s4, 96 / RelLU

FLOPs
4M

16M
37M

74M
112M
149M

223M

105M

https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/content/image_segmentation.html

Avoid AlexNet and
VGG nets

"I can’t believe people still use VGG nets”

- Karen Simonyan, author of the VGG nets paper

o, filters

standard convolutions

C, RelU

h, H :

Convolution Reminder

W

https://www.jeremyjordan.me/convnet-architectures/

A convolutional layer takes a C1 channel input and spits out
a C2 channel output

It consists of C2 filters each of size h1*w1*C1

This uses C2*C1*h1*w1 parameters

Channel size can get quite big (usually up to 512)

Grouped
Convolutions

In a grouped convolution, we split the
input along the channel dimension

Picture this as a bunch of smaller
convolutions, each going from C1/g
channels to C2/g channels

Each of these uses (C2/g)*(C1/g)*h1*w1
parameters

But there are g of them so the total cost
is (C2/g)*(C1/g)*h1*wil*g

(C2/g)*(C1/g)*h1*wl*g =
C2*C1*h1*w1*(1/g) = original_cost /g

standard convolutions

grouped convolutions

W

C,

*

“,

e %
h;

‘.: f%

C, RellU

*
h
"w,

VS.

¢ ,ﬁlter «Cfa

\

@ g RelU
“Ufg

“I’

~'So this means | can
split all my convolutions
into loads of groups and
enjoy a massive
parameter reduction
without any
consequences.”

— Geoff Hinton*

Q: How is Geoff
mistaken?

What’s the catch?

* Geoff Hinton probably didn’t say this

-
E H

== L ff N[=

JINA LA 2
NEEE .

= LAl NCANN,

-

=

P> Z

2

Channel mixing!

* In MobileNet
(

) the authors split all their
convolutions into the maximum
number of groups (g equal to the
number of input channels)

Channels are then mixed by using a
pointwise convolution

 This uses a 1x1 kernelsouses1 *1 *
C1 * C2 parameters

Dy
DK -— N —
(a) Standard Convolution Filters
1
DK - Ean

DK <—M—>

(b) Depthwise Convolutional Filters

(c) 1 x 1 Convolutional Filters called Pointwise Convolution in the con-
text of Depthwise Separable Convolution

https://arxiv.org/pdf/1704.04861.pdf

1,179,648 parameters

<—N—>

(a) Standard Convolution Filters

2,304 parameters

<—M—>

(b) Depthwise Convolutional Filters

%%% % 131,072 parameters

«— N —

(¢c) 1 x 1 Convolutional Filters called Pointwise Convolution in the con-
text of Depthwise Separable Convolution

Enter ShuffleNet (https://arxiv.org/pdf/1707.01083.pdf)

S Channels = <= Channels — <= Channels —
Input
GConv1
Feature
VOSSR Channel
GConv2
Output

Bottlenecks

. 64-d . 256-d
3x3, 64 1x1, 64
—- ‘Lrelu
) 3x3, 64
3x3, 64 y el
, 1x1, 256

: relu : relu

https://arxiv.org/pdf/1512.03385.pdf

Neural Architecture Search

sep_conv_3x3

c_{k-1} |_sep_c onv_3x3

e.g. DARTS

skip_connect (https://arxiv.org/pdf/1806.09055.pdf)

sep_conv_3x3

skip_connect

c_{k-2)

sep_com 33—~ skip_comect
\ sep_conv_3x3

How do we do make our networks smaller?

e Architecture design

* Neural network pruning

* Network distillation

Pruning neural networks:
alternative facts

* Neural network pruning, like most of deep
learning, was invented in 1997 by Jurgen
Schmidhuber

* He hypothesised that neural networks are
basically plants and should therefore be
watered and pruned

* Because neural networks live inside
computers, Schmidhuber realised that
watering would be difficult, and settled on

pruning

Exhibit A: Jurgen Schmidhuber posing
for the camera with a sad fanboy

Weight pruning

Before

Deep Compression —a weight pruning
tec h n |q U e https://arxiv.org/pdf

/1510.00149.pdf

Start with a Rank all non- Set the T% Fine-tune the
trained zero weights by lowest ranked network and

network, and their magnitude weights to zero increase T.
set threshold T Return to step 2

This massively compresses VGG nets with very little loss of accuracy. Why is this?

The problem with weight pruning

* |t results in sparse weight matrices, which are difficult to leverage into actual
performance improvements on general purpose hardware ® (see our work:

* Not even TPUs have in-built support for sparsity ®

* It targets the giant fully connected layers that don’t need to be there in the first
place ®

https://arxiv.org/pdf/1809.07196.pdf)

Channel pruning

+ +
¢ N; l N
Before convl \ convl /
N,
. v N,
o o o A 4 v
conv?2 / conv?2 \
— ! N, ! N

Fisher pruning — a channel pruning technique

https://arxiv.org/pdf/1801.
05787.pdf

The problem

with pruning

Smaller versions of the
original network trained
from scratch outperform
pruned networks

However, if we take a
pruned network, reset its
weights and train from
scratch these are powerful

Core 17 (CPU)

1080T1 (GPU)

Network Params MACs Error | Speed MACs/ps | Speed MACs/ps
ResNet-18 11.6M 1.81G 30.24 | 0.060s 3.03 | 0.002s 101.3
ResNet-34-A | 12.5M 242G 28.14 | 0.085s 2.83 | 0.004s 72.0
ResNet-34-B 7.9M 1.78G 30.77 | 0.066s 2.71 | 0.003s 49.6
ResNet-9 54M 0.89G 37.04 | 0.035s 2.52 | 0.001s 79.0
ResNet-34-C 49M 122G 33.49 | 0.054s 2.28 | 0.003s 354
ResNet-34-D 25M 0.66G 38.88 | 0.042s 1.16 | 0.003s 18.0

Pruned networks are also slow &

How do we make our networks smaller?

* Architecture design

* Neural network pruning

* Network distillation

Do Deep Nets Really Need to be Deep?

Lei Jimmy Ba Rich Caruana
University of Toronto Microsoft Resear
jimmy@psi.utoronto.ca rcaruana@microsoft.com

Abstract

sion. In this paper we empirically demonstrate that
shallow feed-forward nets can learn the complex functions previously learned by

L]
deep nets and achieve accuracies previously only achievable with deep models.
Moreover, in some S allow nets can learn these deep functions using the
same number of pa as the original deep models. On the TIMIT phoneme
recognition and CIFAR-10 image recognition tasks, shallow nets can be trained
that perform similarly to complex, well-engineered, deeper convolutional models.

1 Introduction

You are given a training set with 1M labeled points. When you train a shallow neural net with one
fully connected feed-forward hidden layer on this data you obtain 86% accuracy on test data. When
you train a deeper neural net as in [1] consisting of a convolutional layer, pooling layer, and three

Y Network disti”ation Can be attributed back to IIDO Deep Nets fully connected feed-forward layers on the same data you obtain 91% accuracy on the same test set.
Really Need to be Deep?” (2013)

* |t has ~500 citations

* "Distilling the Knowledge in a Neural Network” (1 year later) Distlting the Knowledge in a Neural Network
takes this work and adds a single hyperparameter T, which is v
always set to 4 .

* ~1000 citations

Abstract

compres: the knnwledge in an ensemble into a single model which is much eas-
ier to deploy and we develop this approach further using a different compression
Ieghmque ‘We achieve some surprising results on MNIST and we show that we

H can signifi n(lvun m\eth acoustic E
* What can we learn from this? e e e]
introduc |r.‘w type of en
specialist models whic
els confuse. Unlike a mixture of experts, these speciali: mudclx can be trained
rapidly and in parallel.

is optimized for extracting energy and nutrients from the envi-
ronment and a completely t adult form that is optimized for the very different requirements
of traveling and reproduction. In large-scale machine learning, we typically use very similar models

Distilling the Knowledge in a Neural Network

How to get all the

Geoffrey Hinton" ' Oriol Vinyals' Jeff Dean
t t Google Inc. Google Inc. Google Inc.
C I a | O n S Mountain View Mountain View Mountain View
geoffhinton@google.com vinyals@google.com jeff@google.com
Abstract
° Give your pa per a COOl t|t|e A very simple way to improve the performance of almost any machine learning

algorithm is to train many different models on the same data and then to average
their predictions [3]. Unfortunately, making predictions using a whole ensemble
of models is cumbersome and may be too computationally expensive to allow de-
ployment to a large number of users, especially if the individual models are large
neural nets. Caruana and his collaborators [1] have shown that it is possible to
compress the knowledge in an ensemble into a single model which is much eas-
ier to deploy and we develop this approach further using a different compression
technique. We achieve some surprising results on MNIST and we show that we
can significantly improve the acoustic model of a heavily used commercial system
by distilling the knowledge in an ensemble of models into a single model. We also
introduce a new type of ensemble composed of one or more full models and many
° Be G eoff H | nton specialist models which learn to distinguish fine-grained classes that the full mod-
els confuse. Unlike a mixture of experts, these specialist models can be trained
rapidly and in parallel.

* Begin with a tenuous link to
biology

1 Introduction

Many insects have a larval form that is optimized for extracting energy and nutrients from the envi-
ronment and a completely different adult form that is optimized for the very different requirements
of traveling and reproduction. In large-scale machine learning, we typically use very similar models
for the training stage and the deployment stage despite their very different requirements: For tasks
like speech and object recognition, training must extract structure from very large, highly redundant
datasets but it does not need to operate in real time and it can use a huge amount of computation.
Deployment to a large number of users, however, has much more stringent requirements on latency

Knowledge Distillation

L=(1-p)rga+ pcsoft

Hard target: ¥ Current output Soft target: 4
(one-hot) I (softmax) (tempered softmax)

Student model Teacher model

https://www.semanticscholar.o
rg/paper/Domain-adaptation-

The student is
learning intra-class
information [Tt x| Mo GEsTe 721580

Attention Transfer

rrrrrrrrrrrrrrrr

ttttttt W W Way

ssssss

The student is learning
where to look 03928 pdf

https://arxiv.org/pdf/1612.

Attention transfer works better than Knowledge Distillation

Shameless

Self- In the attention transfer paper, the student networks have lower

Promotion depth/width than the teacher
Slide

In our NeurlPS paper last year () we
show that it’s preferable to simply replace its convolutional blocks with
cheaper alternatives

https://arxiv.org/abs/1711.02613

Sensible design choices allow for
substantial compression

Avoid pruning ©

Summary

Attention Transfer works well for network
distillation. Use replacement blocks

Be Geoff Hinton

Thanks!

