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Generative modeling

● Density estimation

● Sample generation
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Why are generative models useful?

● Test of our intellectual ability to use high dimensional probability 
distributions

● Learn from simulated data and transfer it to real world

● Complete missing data (including multi-modal)

● Realistic generation tasks (image and speech)
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Next video frame prediction

Lotter et al 2016

4Lotter et al. Deep Predictive Coding Networks for Video Prediction and Unsupervised Learning, ICLR’17

https://arxiv.org/pdf/1605.08104.pdf


Photo-realistic super-resolution

5Ledig et al. Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network, CVPR’17

https://arxiv.org/pdf/1609.04802.pdf


Image-to-image translation

6Isola et al. Image-to-Image Translation with Conditional Adversarial Nets, CVPR’17

https://arxiv.org/abs/1611.07004


Maximum likelihood

Assume that all generative models 
maximise the likelihood of the training 
data

● 𝑥: input
● 𝑝𝑑𝑎𝑡𝑎 : probability density function 

of input samples
● 𝑝𝑚𝑜𝑑𝑒𝑙: estimate probability 

function, parameterised by 𝜃
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Taxonomy of generative methods
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Generative adversarial networks
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generator    
𝐺(⋅; 𝜃𝐺)

(counterfeiter)

noise

real samples £
discriminator 
𝐷(⋅; 𝜃𝐷)
(police) 0

1

real

fake

𝐺(𝑧; 𝜃𝐺)

𝑥

𝑧 • 𝐷 tries to make 
𝐷(𝑥) near 1 and 
𝐷(𝐺 𝑧) near 0

• 𝐺 tries to make 
𝐷(𝐺 𝑧) near 1



Minimax game

𝑉 𝜃𝐺 , 𝜃𝐷 =
1

2
𝔼𝑥~𝑝𝑑𝑎𝑡𝑎𝑙𝑜𝑔𝐷 𝑥; 𝜃𝐷 +

1

2
𝔼𝑧~𝑝𝑧 log 1 − 𝐷 𝐺 𝑧; 𝜃𝐺

● min
𝜃𝐺

m𝑎𝑥
𝜃𝐷

V 𝜃𝐺 , 𝜃𝐷

● 𝐷 wishes to maximise V(𝜃𝐺 , 𝜃𝐷) and controls 𝜃𝐷

● 𝐺 wishes to minimise V(𝜃𝐺 , 𝜃𝐷) and controls 𝜃𝐺

● Solution to optimization at local minimum

● Game of two players with a solution at Nash equilibrium
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Non-saturating game

𝐽𝐷 = −
1

2
𝔼𝑥~𝑝𝑑𝑎𝑡𝑎𝑙𝑜𝑔𝐷 𝑥; 𝜃𝐷 −

1

2
𝔼𝑧~𝑝𝑧 log 1 − 𝐷 𝐺 𝑧;𝜃𝐺

𝐽𝐺 =
1

2
𝔼𝑧~𝑝𝑧 log 1 − 𝐷 𝐺 𝑧;𝜃𝐺

● Problem: when 𝐷 successfully rejects generator samples, generator’s 
gradient vanishes

● Solution:

𝐽𝐺 = −
1

2
𝔼𝑧~𝑝𝑧 log 𝐷 𝐺 𝑧; 𝜃𝐺
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Training GANs
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generator    
𝐺(⋅; 𝜃𝐺)

noise

real samples £
discriminator 
𝐷(⋅; 𝜃𝐷)

𝐺(𝑧; 𝜃𝐺)

𝑥

𝑧

𝜕𝐽𝐷

𝜕𝐷

𝜕𝐽𝐺

𝜕𝐷

𝜕𝐽𝐺

𝜕𝐷

𝜕𝐷

𝜕𝐺 𝐽𝐺 = −
1

2
𝔼𝑧~𝑝𝑧 log 𝐷 𝐺 𝑧; 𝜃𝐺

𝜕𝐽𝐷

𝜕𝐷

𝜕𝐷

𝜕𝜃𝐷

𝜕𝐽𝐺

𝜕𝐷

𝜕𝐷

𝜕𝐺

𝜕𝐺

𝜕𝜃𝐺

𝜕𝐽𝐺

𝜕𝐷

𝐽𝐷

𝐽𝐺

𝐽𝐷 = −
1

2
𝔼𝑥~𝑝𝑑𝑎𝑡𝑎𝑙𝑜𝑔𝐷 𝑥; 𝜃𝐷 −

1

2
𝔼𝑧~𝑝𝑧 log 1− 𝐷 𝐺 𝑧; 𝜃𝐺



Transpose convolution

Stride=1

Review: Transposed convolution (deconv)

Convolution

Stride=1

14
Dumoulin and Vision (2016), A guide to convolution arithmetic for deep learning, arXiv

https://arxiv.org/pdf/1603.07285.pdf


Transpose convolution

Stride=2

Review: Transposed convolution (deconv)

Convolution

Stride=2

15
Dumoulin and Vision (2016), A guide to convolution arithmetic for deep learning, arXiv

https://arxiv.org/pdf/1603.07285.pdf


DCGAN (generator) architecture

● Deconv weights are learned (unlike Zeiler & Fergus, see lecture 12)
● Deconvs are batch normalized
● No fully connected layer
● Adam optimiser

16
Radford et al, (2015). Unsupervised representation learning with deep convolutional generative adversarial networks. 

https://arxiv.org/pdf/1511.06434.pdf


DCGAN for LSUN bedrooms

High quality images on restricted domain

17
Radford et al (2015). Unsupervised representation learning with deep convolutional generative adversarial networks. 

https://arxiv.org/pdf/1511.06434.pdf


Vector arithmetic on face samples

Semantically meaningful latent space

18
Radford et al (2015). Unsupervised representation learning with deep convolutional generative adversarial networks. 

https://arxiv.org/pdf/1511.06434.pdf


Problems with counting and global structure

19
Salimans et al, S. (2016). Improved Techniques for Training GANs. NeurIPS. 

https://arxiv.org/pdf/1606.03498.pdf


Mode collapse

- Another failure mode is for the generator to collapse to a single mode
- If the generator learns to render only one realistic object, this can be 

enough to fool the discriminator

20
Salimans et al, S. (2016). Improved Techniques for Training GANs. NeurIPS. 

https://arxiv.org/pdf/1606.03498.pdf


Measuring GAN performance

Ask humans to distinguish between generated data and real data
● Subjective, requires training to spot flaws

Automating the evaluation (Inception score):
1. Image quality: images should contain meaningful objects (few dominant objects)

- Feed images to Inception Net to obtain conditional label distribution 𝑝 𝑦 𝑥
- For each generated image, entropy over classes σ𝑦 𝑝 𝑦 𝑥 𝑙𝑜𝑔 𝑝 𝑦 𝑥 should be low

2.   Diversity: the model should generate varied images (balanced over classes)
- Entropy over generated images ׬𝑝 𝑦 𝑥 = 𝐺 𝑧 𝑑𝑧 should be high

● Combining two requirements (“how different is the score distribution for a 
generated image from the overall class balance?”)

𝐸𝑥𝐾𝐿(𝑝(𝑦|𝑥)||𝑝(𝑦))
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Salimans et al, S. (2016). Improved Techniques for Training GANs. NeurIPS. 

https://arxiv.org/pdf/1606.03498.pdf


Class-conditional GANs

● Add class information in latent code 𝑧
● It is not unsupervised anymore

22
Mirza and Osindero (2014). Conditional Generative Adversarial Nets. arXiv. 

generator    
𝐺(⋅; 𝜃𝐺)

noise

0

1

0

One-hot 
class 
label

https://arxiv.org/pdf/1411.1784.pdf


Spectral normalization

● GAN training can be unstable
● Culprit: Gradient updates for G are 

unbounded
● Observation: First layer weights of G

are ill-behaved when the training is 
unstable

● Solution: Apply spectral norm

● Spectral norm is the square root of 
the maximum eigenvalue of 𝑊𝑇𝑊

○ 𝜎 𝑊 = 𝑚𝑎𝑥
𝑊ℎ 2

ℎ 2
→ 𝑊/𝜎(𝑊)

23
Miyato et al. (2018). Spectral Normalization for GANs. ICLR.

Baseline

https://arxiv.org/pdf/1411.1784.pdf


Scaling up GANs

Brock et al show that
● bigger batch sizes
● more number of filter channels 

(~50% more)
● larger dataset (292 million 

images with 8.5k images, 512 
TPU cores!)

improves state-of-the-art around 
35% in Inception Score

24
Brock et al. (2019). Large Scale GAN Training for High Fidelity Natural Image Synthesis. ICLR.

https://arxiv.org/pdf/1809.11096


2014 to 2019

25
Brock et al. (2019). 

Goodfellow et al. (2014). 

https://arxiv.org/pdf/1809.11096
https://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf


Summary

• Generative models

• Training GANs

• DCGAN Architecture

• (Open) challenges

• Improvements
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Reading material

Recommended
● Goodfellow et al, (2014). Generative adversarial nets. NeurIPS. 
● Longer version Goodfellow, (2016). NIPS 2016 Tutorial: Generative Adversarial Networks.

Extra
● Radford et al, S. (2015). Unsupervised representation learning with deep convolutional 

generative adversarial networks. 
● Salimans et al, S. (2016). Improved Techniques for Training GANs. NeurIPS.
● Miyato et al. (2018). Spectral Normalization for GANs. ICLR.
● Brock et al. (2019). Large Scale GAN Training for High Fidelity Natural Image Synthesis. ICLR.
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https://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
https://arxiv.org/pdf/1701.00160
https://arxiv.org/pdf/1511.06434.pdf
https://arxiv.org/pdf/1606.03498.pdf
https://arxiv.org/pdf/1411.1784.pdf
https://arxiv.org/pdf/1809.11096

