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Question

Q1. How can we increase the receptive field area of a conv layer?
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Question

Q1. How can we increase the receptive field area of a conv layer?
Q2. Can we do it without increasing kernel size?
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Input arguments for convolution function

in channels

out channels

kernel size

stride

padding

bias

dilation?

groups?
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Dilated convolutions

Increased receptive field by inflating the kernel by inserting D − 1 spaces between the
kernel elements
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Dilated convolutions

Increased receptive field by inflating the kernel by inserting D − 1 spaces between the
kernel elements

Why to increase receptive field size?
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Dilated convolutions

Increased receptive field by inflating the kernel by inserting D − 1 spaces between the
kernel elements

Yu & Koltun, “Multi-scale context aggregation by dilated convolutions”, ICLR, 2016.
https://arxiv.org/pdf/1511.07122.pdf
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(Convolutional) filter groups

G is number of groups

Reduces number of convolutional filters (or parameters)

Regularisation effect
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Convolution and cross-correlation

We can write the feature map hidden unit equation (Index-0):

hi ,j =
∑
m=0

∑
n=0

I (m + i , n + j)W (m, n)

h = W ⊗ I

⊗ is a cross-correlation

In signal processing a 2D convolution is written as

hi ,j = (V ∗ I ) =
∑
m=0

∑
n=0

I (m, n)V (i −m, j − n)

hi ,j = (I ∗ V ) =
∑
m=0

∑
n=0

I (i −m, j − n)V (m, n)

If we “flip” (reflect horizontally and vertically) W (cross-correlation) then we
obtain V (convolution)
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Training Convolutional Networks

Forward pass

MLP Lecture 8 / 30 October / 6 November 2018 Convolutional Networks 2: Training, deep convolutional networks 7



Training Convolutional Networks

Forward pass Backward pass
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Example

hl11 = w l
11h

l−1
11 + w l

12h
l−1
12 + w l

21h
l−1
21 + w l

22h
l−1
22 + b

hl12 = w l
11h

l−1
12 + w l

12h
l−1
13 + w l

21h
l−1
22 + w l

22h
l−1
23 + b

hl21 = w l
11h

l−1
21 + w l

12h
l−1
22 + w l

21h
l−1
31 + w l

22h
l−1
32 + b

hl22 = w l
11h

l−1
22 + w l

12h
l−1
23 + w l

21h
l−1
32 + w l

22h
l−1
33 + b
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Gradients of E w.r.t W l
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hl22 = w l
11h

l−1
22 + w l

12h
l−1
23 + w l

21h
l−1
32 + w l

22h
l−1
33 + b

Let’s calculate the parameter updates ( ∂E
∂W l )

∂E

∂w l
11

=
∂E

∂hl11

∂hl11
∂w l

11

+
∂E

∂hl12

∂hl12
∂w l

11

+
∂E

∂hl21

∂hl21
∂w l

11

+
∂E

∂hl22

∂hl22
∂w l

11
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∂W l )

∂E

∂w l
11

=
∂E

∂hl11
hl−1
11 +

∂E

∂hl12
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12 +

∂E

∂hl21
hl−1
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∂E

∂hl22
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23 + w l

21h
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32 + w l

22h
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33 + b

Let’s calculate the parameter updates ( ∂E
∂W l )

∂E

∂w l
12

=
∂E

∂hl11
hl−1
12 +

∂E

∂hl1,2
hl−1
13 +

∂E

∂hl21
hl−1
22 +

∂E

∂hl22
hl−1
23
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Let’s calculate the parameter updates ( ∂E
∂W l )

∂E

∂w l
2,1

=
∂E

∂hl11
hl−1
21 +

∂E

∂hl12
hl−1
22 +

∂E

∂hl21
hl−1
31 +

∂E

∂hl22
hl−1
32
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hl22 = w l
11h

l−1
22 + w l

12h
l−1
23 + w l

21h
l−1
32 + w l

22h
l−1
33 + b

Let’s calculate the parameter updates ( ∂E
∂W l )

∂E

∂w l
2,2

=
∂E

∂hl11
hl−1
22 +

∂E

∂hl12
hl−1
33 +

∂E

∂hl21
hl−1
32 +

∂E

∂hl22
hl−1
33
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Gradients of E w.r.t W l

∂E

∂w l
1,1

=
∂E

∂hl11
hl−1
11 +

∂E

∂hl12
hl−1
12 +

∂E

∂hl21
hl−1
21 +

∂E

∂hl22
hl−1
22

∂E

∂w l
12

=
∂E

∂hl11
hl−1
12 +

∂E

∂hl12
hl−1
13 +

∂E

∂hl21
hl−1
22 +

∂E

∂hl22
hl−1
23

∂E

∂w l
21

=
∂E

∂hl11
hl−1
21 +

∂E

∂hl12
hl−1
22 +

∂E

∂hl21
hl−1
31 +

∂E

∂hl22
hl−1
32

∂E

∂w l
22

=
∂E

∂hl11
hl−1
22 +

∂E

∂hl12
hl−1
33 +

∂E

∂hl21
hl−1
32 +

∂E

∂hl22
hl−1
33

Given H l ∈ RM l×N l

∂E

∂w l
r ,s

=
M l∑
m=1

N l∑
n=1

∂E

∂hlm,n

hl−1
r+m−1,s+n−1
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Gradients of E w.r.t W l

∂E

∂w l
r ,s

=
M l∑
m=1

N l∑
n=1

∂E

∂hlm,n

hl−1
r+m−1,s+n−1
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Gradients of E w.r.t H l−1

Forward pass Backward pass
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Gradients of E w.r.t H l−1
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Gradients of E w.r.t H l−1

Imagine inverting the receptive field!
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Gradients of E w.r.t hl−1

hl11 = w l
11h

l−1
11 + w l

12h
l−1
12 + w l

21h
l−1
21 + w l

22h
l−1
22 + b

hl12 = w l
11h

l−1
12 + w l

12h
l−1
13 + w l

21h
l−1
22 + w l

22h
l−1
23 + b

hl21 = w l
11h

l−1
21 + w l

12h
l−1
22 + w l

21h
l−1
31 + w l

22h
l−1
32 + b

hl22 = w l
11h

l−1
22 + w l

12h
l−1
23 + w l

21h
l−1
32 + w l

22h
l−1
33 + b

Let’s calculate the gradients of loss function (E ) with respect to previous layer (H l−1)

∂E

∂hl−1
11

=
∂E

∂hl11

∂hl11
∂hl−1

11

+
∂E

∂hl12

∂hl12
∂hl−1

11

+
∂E

∂hl21

∂hl21
∂hl−1

11

+
∂E

∂hl22

∂hl22
∂hl−1

11
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Gradients of E w.r.t hl−1
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12h
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21h
l−1
32 + w l

22h
l−1
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Let’s calculate the gradients of loss function (E ) with respect to previous layer (H l−1)

∂E

∂hl−1
11

=
∂E

∂hl11

∂hl11
∂hl−1

11

+
∂E

∂hl12

∂hl12
∂hl−1

11

+
∂E

∂hl21

∂hl21
∂hl−1

11

+
∂E

∂hl22

∂hl22
∂hl−1

11

∂E

∂hl−1
11

=
∂E

∂hl11
w l
11 +

∂E

∂hl12
0 +

∂E

∂hl21
0 +

∂E

∂hl22
0
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Gradients of E w.r.t hl−1
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Let’s calculate the gradients of loss function (E ) with respect to previous layer (H l−1)

∂E

∂hl−1
22

=
∂E

∂hl11

∂hl11
∂hl−1

22

+
∂E

∂hl12

∂hl12
∂hl−1

22

+
∂E

∂hl21

∂hl21
∂hl−1

22

+
∂E

∂hl22

∂hl22
∂hl−1

22
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∂hl21
∂hl−1

22

+
∂E

∂hl22

∂hl22
∂hl−1

22

∂E

∂hl−1
22

=
∂E

∂hl11
w l
22 +

∂E

∂hl12
w l
21 +

∂E

∂hl21
w l
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∂E

∂hl22
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Gradients of E w.r.t H l−1

Imagine inverting the receptive field!

MLP Lecture 8 / 30 October / 6 November 2018 Convolutional Networks 2: Training, deep convolutional networks 16



Backpropagation for pooling

Max function: m = max(a, b)

∂m
∂a =

{
1 if a > b,

0 else.
∂m
∂b =

{
1 if b > a,

0 else.
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Implementing fully-connected networks

Example at a time:

input vector

weight matrix

output vector

d k k

d
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Implementing fully-connected networks

Minibatch:

input vector
(minibatch) weight matrix

output vector
(minibatch)

d k k

dn n
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Implementing fully-connected networks

Minibatch:

input vector
(minibatch) weight matrix

output vector
(minibatch)

d k k

dn n

input dimension x minibatch: Represent each layer as a 2-dimension matrix, where
each row corresponds to a training example, and the number of minibatch examples is
the number of rows

MLP Lecture 8 / 30 October / 6 November 2018 Convolutional Networks 2: Training, deep convolutional networks 18



Implementing Convolutional Networks

Example at a time, single input image, single feature map:

input image weight matrix
(kernel)

feature map

x m

l

y
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Implementing Convolutional Networks

Example at a time, single input image, multiple feature map:

input image weight matrices
(kernels)

feature maps

x m

l

y
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Implementing Convolutional Networks

Example at a time, multiple input images, multiple feature map:

multiple
input images

weight matrices
(kernels)

feature maps

x

l

y

m
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Implementing Convolutional Networks

Minibatch, multiple input images, multiple feature map:

minibatch of
multiple

input images

weight matrices
(kernels)

minibatch of
feature maps

x

l

y

m

. . . . . .
nn
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Implementing Convolutional Networks

Inputs / layer values:

Each input image (and convlutional and pooling layer) is 2-dimensions (x,y)
If we have multiple feature maps, then that is a third dimension
And the minibatch adds a fourth dimension
Thus we represent each input (layer values) using a 4-dimension tensor (array):
(minibatch-size, num-fmaps, x, y)

Weight matrices (kernels)

Each weight matrix used to scan across an image has 2 spatial dimensions (x,y)
If there are multiple feature maps to be computed, then that is a third dimension
Multiple input feature maps adds a fourth dimension
Thus the weight matrices are also represented using a 4-dimension tensor: (Fin, Fout,
x, y)
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4D tensors in numpy

Both forward and back prop thus involves multiplying 4D tensors. There are various
ways to do this:

Explicitly loop over the dimensions: this results in simpler code, but can be
inefficient. Although using cython to compile the loops as C can speed things up

Serialisation: By replicating input patches and weight matrices, it is possible to
convert the required 4D tensor multiplications into a large dot product. Requires
careful manipulation of indices!

Convolutions: use explicit convolution functions for forward and back prop,
rotating for the backprop
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Deep

convolutional networks
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LeNet5 (LeCun et al, 1997)

2 convolutional layers {C1, C3} + non-linearity

2 average pooling {S2, S4}
2 fully connected hidden layer (no weight sharing) {C5, F6}
Softmax classifier layer
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ImageNet Classification (“AlexNet”)

Krizhevsky, Sutskever and Hinton, “ImageNet Classification with Deep Convolutional
Neural Networks”, NIPS’12.
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

5 convolutional layers + non-linearity (ReLU)

3 max pooling layers

2 fully connected hidden layer

Softmax classifier layer
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ImageNet Classification (“VGGNet”)

Simonyan and Zisserman, “Very Deep Convolutional Networks for Large-Scale Visual
Recognition”, ILSVRC-2014. http://www.robots.ox.ac.uk/~vgg/research/very_deep/

Network Design 

Key design choices: 
• 3x3 conv. kernels – very small 
• conv. stride 1 – no loss of information 

 
Other details: 
• Rectification (ReLU) non-linearity 
• 5 max-pool layers (x2 reduction) 
• no normalisation 
• 3 fully-connected (FC) layers 

4 
image 

conv-64 
conv-64 
maxpool 

FC-4096 
FC-4096 
FC-1000 
softmax 

conv-128 
conv-128 
maxpool 

conv-256 
conv-256 
maxpool 

conv-512 
conv-512 
maxpool 

conv-512 
conv-512 
maxpool 

224x224

112x112

56x56

28x28

14x14

7x7 49x512x4096
= 102.8M wts

16.8M wts
4.1M wts

2.4M wts

2.4M wts

2.4M wts

1.2M wts

0.6M wts

0.3M wts

0.2M wts

0.1M wts

Total
134M wts
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Simply stacking more layers?

He et al, “Deep Residual Learning for Image Recognition”, CVPR-2016.

http://arxiv.org/abs/1512.03385

56-layer net has higher training error and test error than 20-layer net!
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Figure 2. Residual learning: a building block.

are comparably good or better than the constructed solution
(or unable to do so in feasible time).

In this paper, we address the degradation problem by
introducing a deep residual learning framework. In-
stead of hoping each few stacked layers directly fit a
desired underlying mapping, we explicitly let these lay-
ers fit a residual mapping. Formally, denoting the desired
underlying mapping as H(x), we let the stacked nonlinear
layers fit another mapping of F(x) := H(x)�x. The orig-
inal mapping is recast into F(x)+x. We hypothesize that it
is easier to optimize the residual mapping than to optimize
the original, unreferenced mapping. To the extreme, if an
identity mapping were optimal, it would be easier to push
the residual to zero than to fit an identity mapping by a stack
of nonlinear layers.

The formulation of F(x)+x can be realized by feedfor-
ward neural networks with “shortcut connections” (Fig. 2).
Shortcut connections [2, 34, 49] are those skipping one or
more layers. In our case, the shortcut connections simply
perform identity mapping, and their outputs are added to
the outputs of the stacked layers (Fig. 2). Identity short-
cut connections add neither extra parameter nor computa-
tional complexity. The entire network can still be trained
end-to-end by SGD with backpropagation, and can be eas-
ily implemented using common libraries (e.g., Caffe [19])
without modifying the solvers.

We present comprehensive experiments on ImageNet
[36] to show the degradation problem and evaluate our
method. We show that: 1) Our extremely deep residual nets
are easy to optimize, but the counterpart “plain” nets (that
simply stack layers) exhibit higher training error when the
depth increases; 2) Our deep residual nets can easily enjoy
accuracy gains from greatly increased depth, producing re-
sults substantially better than previous networks.

Similar phenomena are also shown on the CIFAR-10 set
[20], suggesting that the optimization difficulties and the
effects of our method are not just akin to a particular dataset.
We present successfully trained models on this dataset with
over 100 layers, and explore models with over 1000 layers.

On the ImageNet classification dataset [36], we obtain
excellent results by extremely deep residual nets. Our 152-
layer residual net is the deepest network ever presented on
ImageNet, while still having lower complexity than VGG
nets [41]. Our ensemble has 3.57% top-5 error on the

ImageNet test set, and won the 1st place in the ILSVRC
2015 classification competition. The extremely deep rep-
resentations also have excellent generalization performance
on other recognition tasks, and lead us to further win the
1st places on: ImageNet detection, ImageNet localization,
COCO detection, and COCO segmentation in ILSVRC &
COCO 2015 competitions. This strong evidence shows that
the residual learning principle is generic, and we expect that
it is applicable in other vision and non-vision problems.

2. Related Work

Residual Representations. In image recognition, VLAD
[18] is a representation that encodes by the residual vectors
with respect to a dictionary, and Fisher Vector [30] can be
formulated as a probabilistic version [18] of VLAD. Both
of them are powerful shallow representations for image re-
trieval and classification [4, 48]. For vector quantization,
encoding residual vectors [17] is shown to be more effec-
tive than encoding original vectors.

In low-level vision and computer graphics, for solv-
ing Partial Differential Equations (PDEs), the widely used
Multigrid method [3] reformulates the system as subprob-
lems at multiple scales, where each subproblem is respon-
sible for the residual solution between a coarser and a finer
scale. An alternative to Multigrid is hierarchical basis pre-
conditioning [45, 46], which relies on variables that repre-
sent residual vectors between two scales. It has been shown
[3, 45, 46] that these solvers converge much faster than stan-
dard solvers that are unaware of the residual nature of the
solutions. These methods suggest that a good reformulation
or preconditioning can simplify the optimization.

Shortcut Connections. Practices and theories that lead to
shortcut connections [2, 34, 49] have been studied for a long
time. An early practice of training multi-layer perceptrons
(MLPs) is to add a linear layer connected from the network
input to the output [34, 49]. In [44, 24], a few interme-
diate layers are directly connected to auxiliary classifiers
for addressing vanishing/exploding gradients. The papers
of [39, 38, 31, 47] propose methods for centering layer re-
sponses, gradients, and propagated errors, implemented by
shortcut connections. In [44], an “inception” layer is com-
posed of a shortcut branch and a few deeper branches.

Concurrent with our work, “highway networks” [42, 43]
present shortcut connections with gating functions [15].
These gates are data-dependent and have parameters, in
contrast to our identity shortcuts that are parameter-free.
When a gated shortcut is “closed” (approaching zero), the
layers in highway networks represent non-residual func-
tions. On the contrary, our formulation always learns
residual functions; our identity shortcuts are never closed,
and all information is always passed through, with addi-
tional residual functions to be learned. In addition, high-

2

A solution by construction:

original layers: copied from a learned shallower model

extra layers: set as identity

at least the same training error
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are comparably good or better than the constructed solution
(or unable to do so in feasible time).

In this paper, we address the degradation problem by
introducing a deep residual learning framework. In-
stead of hoping each few stacked layers directly fit a
desired underlying mapping, we explicitly let these lay-
ers fit a residual mapping. Formally, denoting the desired
underlying mapping as H(x), we let the stacked nonlinear
layers fit another mapping of F(x) := H(x)�x. The orig-
inal mapping is recast into F(x)+x. We hypothesize that it
is easier to optimize the residual mapping than to optimize
the original, unreferenced mapping. To the extreme, if an
identity mapping were optimal, it would be easier to push
the residual to zero than to fit an identity mapping by a stack
of nonlinear layers.

The formulation of F(x)+x can be realized by feedfor-
ward neural networks with “shortcut connections” (Fig. 2).
Shortcut connections [2, 34, 49] are those skipping one or
more layers. In our case, the shortcut connections simply
perform identity mapping, and their outputs are added to
the outputs of the stacked layers (Fig. 2). Identity short-
cut connections add neither extra parameter nor computa-
tional complexity. The entire network can still be trained
end-to-end by SGD with backpropagation, and can be eas-
ily implemented using common libraries (e.g., Caffe [19])
without modifying the solvers.

We present comprehensive experiments on ImageNet
[36] to show the degradation problem and evaluate our
method. We show that: 1) Our extremely deep residual nets
are easy to optimize, but the counterpart “plain” nets (that
simply stack layers) exhibit higher training error when the
depth increases; 2) Our deep residual nets can easily enjoy
accuracy gains from greatly increased depth, producing re-
sults substantially better than previous networks.

Similar phenomena are also shown on the CIFAR-10 set
[20], suggesting that the optimization difficulties and the
effects of our method are not just akin to a particular dataset.
We present successfully trained models on this dataset with
over 100 layers, and explore models with over 1000 layers.

On the ImageNet classification dataset [36], we obtain
excellent results by extremely deep residual nets. Our 152-
layer residual net is the deepest network ever presented on
ImageNet, while still having lower complexity than VGG
nets [41]. Our ensemble has 3.57% top-5 error on the

ImageNet test set, and won the 1st place in the ILSVRC
2015 classification competition. The extremely deep rep-
resentations also have excellent generalization performance
on other recognition tasks, and lead us to further win the
1st places on: ImageNet detection, ImageNet localization,
COCO detection, and COCO segmentation in ILSVRC &
COCO 2015 competitions. This strong evidence shows that
the residual learning principle is generic, and we expect that
it is applicable in other vision and non-vision problems.

2. Related Work

Residual Representations. In image recognition, VLAD
[18] is a representation that encodes by the residual vectors
with respect to a dictionary, and Fisher Vector [30] can be
formulated as a probabilistic version [18] of VLAD. Both
of them are powerful shallow representations for image re-
trieval and classification [4, 48]. For vector quantization,
encoding residual vectors [17] is shown to be more effec-
tive than encoding original vectors.

In low-level vision and computer graphics, for solv-
ing Partial Differential Equations (PDEs), the widely used
Multigrid method [3] reformulates the system as subprob-
lems at multiple scales, where each subproblem is respon-
sible for the residual solution between a coarser and a finer
scale. An alternative to Multigrid is hierarchical basis pre-
conditioning [45, 46], which relies on variables that repre-
sent residual vectors between two scales. It has been shown
[3, 45, 46] that these solvers converge much faster than stan-
dard solvers that are unaware of the residual nature of the
solutions. These methods suggest that a good reformulation
or preconditioning can simplify the optimization.

Shortcut Connections. Practices and theories that lead to
shortcut connections [2, 34, 49] have been studied for a long
time. An early practice of training multi-layer perceptrons
(MLPs) is to add a linear layer connected from the network
input to the output [34, 49]. In [44, 24], a few interme-
diate layers are directly connected to auxiliary classifiers
for addressing vanishing/exploding gradients. The papers
of [39, 38, 31, 47] propose methods for centering layer re-
sponses, gradients, and propagated errors, implemented by
shortcut connections. In [44], an “inception” layer is com-
posed of a shortcut branch and a few deeper branches.

Concurrent with our work, “highway networks” [42, 43]
present shortcut connections with gating functions [15].
These gates are data-dependent and have parameters, in
contrast to our identity shortcuts that are parameter-free.
When a gated shortcut is “closed” (approaching zero), the
layers in highway networks represent non-residual func-
tions. On the contrary, our formulation always learns
residual functions; our identity shortcuts are never closed,
and all information is always passed through, with addi-
tional residual functions to be learned. In addition, high-
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are comparably good or better than the constructed solution
(or unable to do so in feasible time).

In this paper, we address the degradation problem by
introducing a deep residual learning framework. In-
stead of hoping each few stacked layers directly fit a
desired underlying mapping, we explicitly let these lay-
ers fit a residual mapping. Formally, denoting the desired
underlying mapping as H(x), we let the stacked nonlinear
layers fit another mapping of F(x) := H(x)�x. The orig-
inal mapping is recast into F(x)+x. We hypothesize that it
is easier to optimize the residual mapping than to optimize
the original, unreferenced mapping. To the extreme, if an
identity mapping were optimal, it would be easier to push
the residual to zero than to fit an identity mapping by a stack
of nonlinear layers.

The formulation of F(x)+x can be realized by feedfor-
ward neural networks with “shortcut connections” (Fig. 2).
Shortcut connections [2, 34, 49] are those skipping one or
more layers. In our case, the shortcut connections simply
perform identity mapping, and their outputs are added to
the outputs of the stacked layers (Fig. 2). Identity short-
cut connections add neither extra parameter nor computa-
tional complexity. The entire network can still be trained
end-to-end by SGD with backpropagation, and can be eas-
ily implemented using common libraries (e.g., Caffe [19])
without modifying the solvers.

We present comprehensive experiments on ImageNet
[36] to show the degradation problem and evaluate our
method. We show that: 1) Our extremely deep residual nets
are easy to optimize, but the counterpart “plain” nets (that
simply stack layers) exhibit higher training error when the
depth increases; 2) Our deep residual nets can easily enjoy
accuracy gains from greatly increased depth, producing re-
sults substantially better than previous networks.

Similar phenomena are also shown on the CIFAR-10 set
[20], suggesting that the optimization difficulties and the
effects of our method are not just akin to a particular dataset.
We present successfully trained models on this dataset with
over 100 layers, and explore models with over 1000 layers.

On the ImageNet classification dataset [36], we obtain
excellent results by extremely deep residual nets. Our 152-
layer residual net is the deepest network ever presented on
ImageNet, while still having lower complexity than VGG
nets [41]. Our ensemble has 3.57% top-5 error on the

ImageNet test set, and won the 1st place in the ILSVRC
2015 classification competition. The extremely deep rep-
resentations also have excellent generalization performance
on other recognition tasks, and lead us to further win the
1st places on: ImageNet detection, ImageNet localization,
COCO detection, and COCO segmentation in ILSVRC &
COCO 2015 competitions. This strong evidence shows that
the residual learning principle is generic, and we expect that
it is applicable in other vision and non-vision problems.

2. Related Work

Residual Representations. In image recognition, VLAD
[18] is a representation that encodes by the residual vectors
with respect to a dictionary, and Fisher Vector [30] can be
formulated as a probabilistic version [18] of VLAD. Both
of them are powerful shallow representations for image re-
trieval and classification [4, 48]. For vector quantization,
encoding residual vectors [17] is shown to be more effec-
tive than encoding original vectors.

In low-level vision and computer graphics, for solv-
ing Partial Differential Equations (PDEs), the widely used
Multigrid method [3] reformulates the system as subprob-
lems at multiple scales, where each subproblem is respon-
sible for the residual solution between a coarser and a finer
scale. An alternative to Multigrid is hierarchical basis pre-
conditioning [45, 46], which relies on variables that repre-
sent residual vectors between two scales. It has been shown
[3, 45, 46] that these solvers converge much faster than stan-
dard solvers that are unaware of the residual nature of the
solutions. These methods suggest that a good reformulation
or preconditioning can simplify the optimization.

Shortcut Connections. Practices and theories that lead to
shortcut connections [2, 34, 49] have been studied for a long
time. An early practice of training multi-layer perceptrons
(MLPs) is to add a linear layer connected from the network
input to the output [34, 49]. In [44, 24], a few interme-
diate layers are directly connected to auxiliary classifiers
for addressing vanishing/exploding gradients. The papers
of [39, 38, 31, 47] propose methods for centering layer re-
sponses, gradients, and propagated errors, implemented by
shortcut connections. In [44], an “inception” layer is com-
posed of a shortcut branch and a few deeper branches.

Concurrent with our work, “highway networks” [42, 43]
present shortcut connections with gating functions [15].
These gates are data-dependent and have parameters, in
contrast to our identity shortcuts that are parameter-free.
When a gated shortcut is “closed” (approaching zero), the
layers in highway networks represent non-residual func-
tions. On the contrary, our formulation always learns
residual functions; our identity shortcuts are never closed,
and all information is always passed through, with addi-
tional residual functions to be learned. In addition, high-
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are comparably good or better than the constructed solution
(or unable to do so in feasible time).

In this paper, we address the degradation problem by
introducing a deep residual learning framework. In-
stead of hoping each few stacked layers directly fit a
desired underlying mapping, we explicitly let these lay-
ers fit a residual mapping. Formally, denoting the desired
underlying mapping as H(x), we let the stacked nonlinear
layers fit another mapping of F(x) := H(x)�x. The orig-
inal mapping is recast into F(x)+x. We hypothesize that it
is easier to optimize the residual mapping than to optimize
the original, unreferenced mapping. To the extreme, if an
identity mapping were optimal, it would be easier to push
the residual to zero than to fit an identity mapping by a stack
of nonlinear layers.

The formulation of F(x)+x can be realized by feedfor-
ward neural networks with “shortcut connections” (Fig. 2).
Shortcut connections [2, 34, 49] are those skipping one or
more layers. In our case, the shortcut connections simply
perform identity mapping, and their outputs are added to
the outputs of the stacked layers (Fig. 2). Identity short-
cut connections add neither extra parameter nor computa-
tional complexity. The entire network can still be trained
end-to-end by SGD with backpropagation, and can be eas-
ily implemented using common libraries (e.g., Caffe [19])
without modifying the solvers.

We present comprehensive experiments on ImageNet
[36] to show the degradation problem and evaluate our
method. We show that: 1) Our extremely deep residual nets
are easy to optimize, but the counterpart “plain” nets (that
simply stack layers) exhibit higher training error when the
depth increases; 2) Our deep residual nets can easily enjoy
accuracy gains from greatly increased depth, producing re-
sults substantially better than previous networks.

Similar phenomena are also shown on the CIFAR-10 set
[20], suggesting that the optimization difficulties and the
effects of our method are not just akin to a particular dataset.
We present successfully trained models on this dataset with
over 100 layers, and explore models with over 1000 layers.

On the ImageNet classification dataset [36], we obtain
excellent results by extremely deep residual nets. Our 152-
layer residual net is the deepest network ever presented on
ImageNet, while still having lower complexity than VGG
nets [41]. Our ensemble has 3.57% top-5 error on the

ImageNet test set, and won the 1st place in the ILSVRC
2015 classification competition. The extremely deep rep-
resentations also have excellent generalization performance
on other recognition tasks, and lead us to further win the
1st places on: ImageNet detection, ImageNet localization,
COCO detection, and COCO segmentation in ILSVRC &
COCO 2015 competitions. This strong evidence shows that
the residual learning principle is generic, and we expect that
it is applicable in other vision and non-vision problems.

2. Related Work

Residual Representations. In image recognition, VLAD
[18] is a representation that encodes by the residual vectors
with respect to a dictionary, and Fisher Vector [30] can be
formulated as a probabilistic version [18] of VLAD. Both
of them are powerful shallow representations for image re-
trieval and classification [4, 48]. For vector quantization,
encoding residual vectors [17] is shown to be more effec-
tive than encoding original vectors.

In low-level vision and computer graphics, for solv-
ing Partial Differential Equations (PDEs), the widely used
Multigrid method [3] reformulates the system as subprob-
lems at multiple scales, where each subproblem is respon-
sible for the residual solution between a coarser and a finer
scale. An alternative to Multigrid is hierarchical basis pre-
conditioning [45, 46], which relies on variables that repre-
sent residual vectors between two scales. It has been shown
[3, 45, 46] that these solvers converge much faster than stan-
dard solvers that are unaware of the residual nature of the
solutions. These methods suggest that a good reformulation
or preconditioning can simplify the optimization.

Shortcut Connections. Practices and theories that lead to
shortcut connections [2, 34, 49] have been studied for a long
time. An early practice of training multi-layer perceptrons
(MLPs) is to add a linear layer connected from the network
input to the output [34, 49]. In [44, 24], a few interme-
diate layers are directly connected to auxiliary classifiers
for addressing vanishing/exploding gradients. The papers
of [39, 38, 31, 47] propose methods for centering layer re-
sponses, gradients, and propagated errors, implemented by
shortcut connections. In [44], an “inception” layer is com-
posed of a shortcut branch and a few deeper branches.

Concurrent with our work, “highway networks” [42, 43]
present shortcut connections with gating functions [15].
These gates are data-dependent and have parameters, in
contrast to our identity shortcuts that are parameter-free.
When a gated shortcut is “closed” (approaching zero), the
layers in highway networks represent non-residual func-
tions. On the contrary, our formulation always learns
residual functions; our identity shortcuts are never closed,
and all information is always passed through, with addi-
tional residual functions to be learned. In addition, high-
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Hierarchical Representations

Pixel → edge → texton → motif → part → object

Zeiler & Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV’14.
https://cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

Slide credits: Lecun & Ranzato
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Summary

Convolutional networks include local receptive fields, weight sharing, and pooling
leading

Backprop training can also be implemented as a “reverse”convolutional layer
(with the weight matrix rotated)

Implement using 4D tensors:

Inputs / Layer values: minibatch-size, number-fmaps, x, y
Weights: Fin, Fout, x, y
Arguments: stride, kernel size, dilation, filter groups

Reading:
Goodfellow et al, Deep Learning (ch 9)
http://www.deeplearningbook.org/contents/convnets.html
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