
Deep Neural Networks (3)
Computational Graphs, Learning Algorithms, Initialisation

Steve Renals

Machine Learning Practical — MLP Lecture 5
16 October 2018

MLP Lecture 5 / 16 October 2018 Deep Neural Networks (3) 1

Computational Graphs

Computational graphs

Each node is an operation

Data flows between nodes (scalars, vectors, matrices, tensors)

More complex operations can be formed by composing simpler operations

MLP Lecture 5 / 16 October 2018 Deep Neural Networks (3) 2

Computational graph example 1

x

x y

z

Graph for × to compute z = xy

MLP Lecture 5 / 16 October 2018 Deep Neural Networks (3) 3

Computational graph example 2

dot +

sigmoid

bwx

y

Graph for logistic regression:
y = sigmoid(wᵀx + b)

MLP Lecture 5 / 16 October 2018 Deep Neural Networks (3) 4

Computational graph example 3

matmul +

relu

X W b

H

Graph for ReLU layer:
H = relu(WX + b)

MLP Lecture 5 / 16 October 2018 Deep Neural Networks (3) 5

Computational graphs and back-propagation

f(x,y)

x y

z

MLP Lecture 5 / 16 October 2018 Deep Neural Networks (3) 6

Computational graphs and back-propagation

f

x y

z = f(x,y) dE/dz

f’

dE

dx
=

dE

dz

dz

dx

dE

dy
=

dE

dz

dz

dy

Chain rule of differentiation as the backward pass through the computational graph

MLP Lecture 5 / 16 October 2018 Deep Neural Networks (3) 6

Computational graphs

Each node is an operation

Data flows between nodes (scalars, vectors, matrices, tensors)

More complex operations can be formed by composing simpler operations

Implement chain rule of differentiation as a backward pass through the graph

Back-propagation: Multiply the local gradient of an operation with an incoming
gradient (or sum of gradients)

See http://colah.github.io/posts/2015-08-Backprop/

MLP Lecture 5 / 16 October 2018 Deep Neural Networks (3) 7

http://colah.github.io/posts/2015-08-Backprop/

How to set
the learning rate?

Weight Updates

Let di (t) = ∂E/∂wi (t) be the gradient of the error function E with respect to a
weight wi at update time t

“Vanilla” gradient descent updates the weight along the negative gradient
direction:

∆wi (t) = −ηdi (t)

wi (t + 1) = wi (t) + ∆wi (t)

Hyperparameter η - learning rate

Initialise η, and update as the training progresses (learning rate schedule)

MLP Lecture 5 / 16 October 2018 Deep Neural Networks (3) 8

Learning Rate Schedules

Proofs of convergence for stochastic optimisation rely on a learning rate that
reduces through time (as 1/t) - Robbins and Munro (1951)

Learning rate schedule – typically initial larger steps followed by smaller steps for
fine tuning: Results in faster convergence and better solutions

Time-dependent schedules

∆wi (t) = −η(t)di (t)

Piecewise constant: pre-determined η for each epoch
Exponential: η(t) = η(0) exp(−t/r) (r ∼ training set size)
Reciprocal: η(t) = η(0)(1 + t/r)−c (c ∼ 1)

Performance-dependent η – e.g. “NewBOB”: fixed η until validation set stops
improving, then halve η each epoch (i.e. constant, then exponential)

MLP Lecture 5 / 16 October 2018 Deep Neural Networks (3) 9

Learning Rate Schedules

Proofs of convergence for stochastic optimisation rely on a learning rate that
reduces through time (as 1/t) - Robbins and Munro (1951)

Learning rate schedule – typically initial larger steps followed by smaller steps for
fine tuning: Results in faster convergence and better solutions

Time-dependent schedules

∆wi (t) = −η(t)di (t)

Piecewise constant: pre-determined η for each epoch
Exponential: η(t) = η(0) exp(−t/r) (r ∼ training set size)
Reciprocal: η(t) = η(0)(1 + t/r)−c (c ∼ 1)

Performance-dependent η – e.g. “NewBOB”: fixed η until validation set stops
improving, then halve η each epoch (i.e. constant, then exponential)

MLP Lecture 5 / 16 October 2018 Deep Neural Networks (3) 9

Learning Rate Schedules

Proofs of convergence for stochastic optimisation rely on a learning rate that
reduces through time (as 1/t) - Robbins and Munro (1951)

Learning rate schedule – typically initial larger steps followed by smaller steps for
fine tuning: Results in faster convergence and better solutions

Time-dependent schedules

∆wi (t) = −η(t)di (t)

Piecewise constant: pre-determined η for each epoch
Exponential: η(t) = η(0) exp(−t/r) (r ∼ training set size)
Reciprocal: η(t) = η(0)(1 + t/r)−c (c ∼ 1)

Performance-dependent η – e.g. “NewBOB”: fixed η until validation set stops
improving, then halve η each epoch (i.e. constant, then exponential)

MLP Lecture 5 / 16 October 2018 Deep Neural Networks (3) 9

Training with Momentum

∆wi (t) = −ηdi (t) + α∆wi (t − 1)

α ∼ 0.9 is the momentum hyperparameter

Weight changes start by following the gradient

After a few updates they start to have velocity – no longer pure gradient descent

Momentum term encourages the weight change to go in the previous direction

Damps the random directions of the gradients, to encourage weight changes in a
consistent direction

MLP Lecture 5 / 16 October 2018 Deep Neural Networks (3) 10

Adaptive Learning Rates

Tuning learning rate (and momentum) parameters can be expensive
(hyperparameter grid search) – it works, but we can do better

Adaptive learning rates and per-weight learning rates

AdaGrad – normalise the update for each weight
RMSProp – AdaGrad forces the learning rate to always decrease, this constraint is
relaxed with RMSProp
Adam – “RMSProp with momentum”

Well-explained by Andrej Karpathy at
http://cs231n.github.io/neural-networks-3/

MLP Lecture 5 / 16 October 2018 Deep Neural Networks (3) 11

http://cs231n.github.io/neural-networks-3/

AdaGrad

Separate, normalised update for each weight

Normalised by the sum squared gradient S

Si (0) = 0

Si (t) = Si (t − 1) + di (t)2

∆wi (t) =
−η√

Si (t) + ε
di (t)

ε ∼ 10−8 is a small constant to prevent division by 0 errors

The update step for a parameter wi is normalised by the (square root of) the sum
squared gradients for that parameter

Weights with larger gradient magnitudes will have smaller effective learning rates
Si cannot get smaller, so the effective learning rates monotonically decrease

AdaGrad can decrease the effective learning rate too aggressively in deep networks

MLP Lecture 5 / 16 October 2018 Deep Neural Networks (3) 12

AdaGrad

Separate, normalised update for each weight

Normalised by the sum squared gradient S

Si (0) = 0

Si (t) = Si (t − 1) + di (t)2

∆wi (t) =
−η√

Si (t) + ε di (t)

ε ∼ 10−8 is a small constant to prevent division by 0 errors
The update step for a parameter wi is normalised by the (square root of) the sum
squared gradients for that parameter

Weights with larger gradient magnitudes will have smaller effective learning rates
Si cannot get smaller, so the effective learning rates monotonically decrease

AdaGrad can decrease the effective learning rate too aggressively in deep networks

MLP Lecture 5 / 16 October 2018 Deep Neural Networks (3) 12

AdaGrad

Separate, normalised update for each weight

Normalised by the sum squared gradient S

Si (0) = 0

Si (t) = Si (t − 1) + di (t)2

∆wi (t) =
−η√

Si (t) + ε di (t)

ε ∼ 10−8 is a small constant to prevent division by 0 errors
The update step for a parameter wi is normalised by the (square root of) the sum
squared gradients for that parameter

Weights with larger gradient magnitudes will have smaller effective learning rates
Si cannot get smaller, so the effective learning rates monotonically decrease

AdaGrad can decrease the effective learning rate too aggressively in deep networks

Duchi et al, http://jmlr.org/papers/v12/duchi11a.html

MLP Lecture 5 / 16 October 2018 Deep Neural Networks (3) 12

http://jmlr.org/papers/v12/duchi11a.html

RMSProp

RProp (Riedmiller & Braun, http://dx.doi.org/10.1109/ICNN.1993.298623) is a
method for batch gradient descent with an adaptive learning rate for each
parameter, and uses only the sign of the gradient (which is equivalent to
normalising by the gradient)

RMSProp can be viewed as a stochastic gradient descent version of RProp
normalised by a moving average of the squared gradient (Hinton, http:

//www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf) –
similar to AdaGrad, but replacing the sum by a moving average for S :

Si (t) = βSi (t − 1) + (1 − β) di (t)2

∆wi (t) =
−η√

Si (t) + ε
di (t)

β ∼ 0.9 is the decay rate

Effective learning rates no longer guaranteed to decrease

MLP Lecture 5 / 16 October 2018 Deep Neural Networks (3) 13

http://dx.doi.org/10.1109/ICNN.1993.298623
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

RMSProp

RProp (Riedmiller & Braun, http://dx.doi.org/10.1109/ICNN.1993.298623) is a
method for batch gradient descent with an adaptive learning rate for each
parameter, and uses only the sign of the gradient (which is equivalent to
normalising by the gradient)

RMSProp can be viewed as a stochastic gradient descent version of RProp
normalised by a moving average of the squared gradient (Hinton, http:

//www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf) –
similar to AdaGrad, but replacing the sum by a moving average for S :

Si (t) = βSi (t − 1) + (1 − β) di (t)2

∆wi (t) =
−η√

Si (t) + ε di (t)

β ∼ 0.9 is the decay rate

Effective learning rates no longer guaranteed to decrease

MLP Lecture 5 / 16 October 2018 Deep Neural Networks (3) 13

http://dx.doi.org/10.1109/ICNN.1993.298623
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

Adam

Hinton commented about RMSProp: “Momentum does not help as much as it
normally does”

Adam (Kingma & Ba, https://arxiv.org/abs/1412.6980) can be viewed as
addressing this – it is a variant of RMSProp with momentum: Here a
momentum-smoothed gradient is used for the update in place of the gradient.
Kingma and Ba recommend α ∼ 0.9, β ∼ 0.999

MLP Lecture 5 / 16 October 2018 Deep Neural Networks (3) 14

https://arxiv.org/abs/1412.6980

Adam

Hinton commented about RMSProp: “Momentum does not help as much as it
normally does”

Adam (Kingma & Ba, https://arxiv.org/abs/1412.6980) can be viewed as
addressing this – it is a variant of RMSProp with momentum:

Mi (t) = αMi (t − 1) + (1 − α)di (t)

Si (t) = βSi (t − 1) + (1 − β)di (t)2

∆wi (t) =
−η√

Si (t) + ε
Mi (t)

Here a momentum-smoothed gradient is used for the update in place of the
gradient. Kingma and Ba recommend α ∼ 0.9, β ∼ 0.999

MLP Lecture 5 / 16 October 2018 Deep Neural Networks (3) 14

https://arxiv.org/abs/1412.6980

Adam

Hinton commented about RMSProp: “Momentum does not help as much as it
normally does”

Adam (Kingma & Ba, https://arxiv.org/abs/1412.6980) can be viewed as
addressing this – it is a variant of RMSProp with momentum:

Mi (t) = αMi (t − 1) + (1 − α)di (t)

Si (t) = βSi (t − 1) + (1 − β)di (t)2

∆wi (t) =
−η√

Si (t) + ε
Mi (t)

Here a momentum-smoothed gradient is used for the update in place of the
gradient. Kingma and Ba recommend α ∼ 0.9, β ∼ 0.999

MLP Lecture 5 / 16 October 2018 Deep Neural Networks (3) 14

https://arxiv.org/abs/1412.6980

Adam

Hinton commented about RMSProp: “Momentum does not help as much as it
normally does”

Adam (Kingma & Ba, https://arxiv.org/abs/1412.6980) can be viewed as
addressing this – it is a variant of RMSProp with momentum:

Mi (t) = αMi (t − 1) + (1 − α)di (t)

Si (t) = βSi (t − 1) + (1 − β)di (t)2

∆wi (t) =
−η√

Si (t) + ε
Mi (t)

Here a momentum-smoothed gradient is used for the update in place of the
gradient. Kingma and Ba recommend α ∼ 0.9, β ∼ 0.999

MLP Lecture 5 / 16 October 2018 Deep Neural Networks (3) 14

https://arxiv.org/abs/1412.6980

Adam

Hinton commented about RMSProp: “Momentum does not help as much as it
normally does”

Adam (Kingma & Ba, https://arxiv.org/abs/1412.6980) can be viewed as
addressing this – it is a variant of RMSProp with momentum:

Mi (t) = αMi (t − 1) + (1 − α)di (t)

Si (t) = βSi (t − 1) + (1 − β)di (t)2

∆wi (t) =
−η√

Si (t) + ε
Mi (t)

Here a momentum-smoothed gradient is used for the update in place of the
gradient. Kingman and Ba recommend α ∼ 0.9, β ∼ 0.999

Many hyperparameters:
batch-size, learning-rate, momentum,

learning-decay-rate, num-layers, num-units, …..

How to set them?

https://arxiv.org/abs/1412.6980

Coursework 1

http://www.inf.ed.ac.uk/teaching/courses/mlp/coursework-2018.html

Build a baseline using the EMNIST dataset

Compare RMSProp and Adam with SGD

Cosine annealing learning rate scheduler

L2 regularization / weight decay with Adam and cosine annealing

Inspired by Loshchilov and Hutter, Fixing Weight Decay Regularization in Adam

Main aims of the coursework

Read and understand a recent paper in the area

Take the ideas from a paper, implement them in Python, carry out experiments to
address research questions
Write a clear, concise, correct report that includes

What you did
Why you did it
and provides an interpretation of your results, and some conclusions

MLP Lecture 5 / 16 October 2018 Deep Neural Networks (3) 15

http://www.inf.ed.ac.uk/teaching/courses/mlp/coursework-2018.html
https://arxiv.org/abs/1711.05101

How should we initialise
deep networks?

Random weight initialisation

Initialise weights to small random numbers r , sampling weights independently
from a Gaussian or from a uniform distribution

control the initialisation by setting the mean (typically to 0) and variance of the
weight distribution

Biases may be initialised to 0

output (softmax) biases can be normalised to log(p(c)), log of prior probability of
the corresponding class c

Calibration – variance of the input to a unit independent of the number of
incoming connections (“fan-in”, nin)

Heuristic: wi ∼ U(−
√

1/nin,
√

1/nin) [U is uniform distribution]

Corresponds to a variance Var(wi) = 1/(3nin)
(Since, if x ∼ U(a, b), then Var(x) = (b − a)2/12
so if x ∼ U(−n, n), then Var(x) = n2/3)

MLP Lecture 5 / 16 October 2018 Deep Neural Networks (3) 16

Random weight initialisation

Initialise weights to small random numbers r , sampling weights independently
from a Gaussian or from a uniform distribution

control the initialisation by setting the mean (typically to 0) and variance of the
weight distribution

Biases may be initialised to 0

output (softmax) biases can be normalised to log(p(c)), log of prior probability of
the corresponding class c

Calibration – variance of the input to a unit independent of the number of
incoming connections (“fan-in”, nin)

Heuristic: wi ∼ U(−
√

1/nin,
√

1/nin) [U is uniform distribution]

Corresponds to a variance Var(wi) = 1/(3nin)
(Since, if x ∼ U(a, b), then Var(x) = (b − a)2/12
so if x ∼ U(−n, n), then Var(x) = n2/3)

MLP Lecture 5 / 16 October 2018 Deep Neural Networks (3) 16

Why Var(w) ∼ 1/n?

Consider a linear unit:

y =

nin∑
i=1

wixi

if w and x are zero-mean, then

Var(y) = Var(

nin∑
i=1

wixi) = nin Var(x) Var(w)

if w and x are iid (independent and identically distributed)

So, if we want variance of inputs x and outputs y to be the same, set

Var(wi) =
1

nin

Nicely explained at http://andyljones.tumblr.com/post/110998971763/
an-explanation-of-xavier-initialization

MLP Lecture 5 / 16 October 2018 Deep Neural Networks (3) 17

http://andyljones.tumblr.com/post/110998971763/an-explanation-of-xavier-initialization
http://andyljones.tumblr.com/post/110998971763/an-explanation-of-xavier-initialization

“GlorotInit” (“Xavier initialisation”)

We would like to constrain the variance of each layer to be 1/nin, thus

wi ∼ U(−
√

3/nin,
√

3/nin)

However we need to take the backprop into account, hence we would also like
Var(wi) = 1/nout

As compromise set the variance to be Var(wi) = 2/(nin + nout)

This corresponds to Glorot and Bengio’s normalised initialisation

wi ∼ U
(
−
√

6/(nin + nout),
√

6/(nin + nout)
)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward
networks”, AISTATS, 2010.
http://www.jmlr.org/proceedings/papers/v9/glorot10a.html

MLP Lecture 5 / 16 October 2018 Deep Neural Networks (3) 18

http://www.jmlr.org/proceedings/papers/v9/glorot10a.html

Summary

Computational graphs

Learning rate schedules and gradient descent algorithms

Initialising the weights

Reading
Goodfellow et al, sections 6.5, 8.3, 8.5
Olah, “Calculus on Computational Graphs: Backpropagation”,
http://colah.github.io/posts/2015-08-Backprop/

Andrej Karpathy, CS231n notes (Stanford)
http://cs231n.github.io/neural-networks-3/

Additional Reading
Kingma and Ba, “Adam: A Method for Stochastic Optimization”, ICLR-2015
https://arxiv.org/abs/1412.6980

Glorot and Bengio, “Understanding the difficulty of training deep feedforward
networks”, AISTATS-2010.
http://www.jmlr.org/proceedings/papers/v9/glorot10a.html

MLP Lecture 5 / 16 October 2018 Deep Neural Networks (3) 19

http://colah.github.io/posts/2015-08-Backprop/
http://cs231n.github.io/neural-networks-3/
https://arxiv.org/abs/1412.6980
http://www.jmlr.org/proceedings/papers/v9/glorot10a.html

