
Deep Neural Networks (2)
Tanh & ReLU layers; Generalisation and Regularisation

Steve Renals

Machine Learning Practical — MLP Lecture 4
9 October 2018

MLP Lecture 4 / 9 October 2018 Deep Neural Networks (2) 1

Recap: Training multi-layer networks

Outputs

g
(3)
1 g

(3)
` g

(3)
K

Hidden

Hidden

y1 y` yK

w
(3)
1k

w
(3)
`k

w
(3)
Kk

w
(2)
1j

w
(2)
kj

w
(2)
Hj

h
(2)
Hh

(2)
k

h
(2)
1

g
(2)
1 g

(2)
k

g
(2)
H

h
(1)
j

w
(1)
ji

g
(1)
j

xi
Inputs

g
(2)
k =

 X

m

g(3)
m wmk

!
h

(2)
k (1 � h

(2)
k)

@En

@w
(2)
kj

= g
(2)
k h

(1)
j

AffineLayer.fprop

AffineLayer.fprop

AffineLayer.fprop

SigmoidLayer.fprop

SigmoidLayer.fprop

AffineLayer.bprop

AffineLayer.bprop

SigmoidLayer.bprop

SigmoidLayer.bprop

CrossEntropySoftmaxError.grad

MLP Lecture 4 / 9 October 2018 Deep Neural Networks (2) 2

Are there alternatives
to Sigmoid Hidden Units?

Sigmoid function

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a

g(
a)

Logistic sigmoid activation function g(a) = 1/(1+exp(−a))

Sigmoid Hidden Units (SigmoidLayer)

Compress unbounded inputs to (0,1), saturating high magnitudes to 1

Interpretable as the probability of a feature defined by their weight vector

Interpretable as the (normalised) firing rate of a neuron

However...

Saturation causes gradients to approach 0

If the output of a sigmoid unit is h, then the gradient is h(1− h) which approaches 0
as h saturates to 0 or 1 – hence the gradients it multiplies into approach 0.
Small gradients result in small parameter changes, so learning becomes slow

Outputs are not centred at 0

The output of a sigmoid layer will have mean> 0 – numerically undesirable.

MLP Lecture 4 / 9 October 2018 Deep Neural Networks (2) 3

Sigmoid Hidden Units (SigmoidLayer)

Compress unbounded inputs to (0,1), saturating high magnitudes to 1

Interpretable as the probability of a feature defined by their weight vector

Interpretable as the (normalised) firing rate of a neuron

However...

Saturation causes gradients to approach 0

If the output of a sigmoid unit is h, then the gradient is h(1− h) which approaches 0
as h saturates to 0 or 1 – hence the gradients it multiplies into approach 0.
Small gradients result in small parameter changes, so learning becomes slow

Outputs are not centred at 0

The output of a sigmoid layer will have mean> 0 – numerically undesirable.

MLP Lecture 4 / 9 October 2018 Deep Neural Networks (2) 3

tanh

tanh(x) =
ex − e−x

ex + e−x

sigmoid(x) =
1 + tanh(x/2)

2

Derivative:

d

dx
tanh(x) = 1− tanh2(x)

MLP Lecture 4 / 9 October 2018 Deep Neural Networks (2) 4

tanh hidden units (TanhLayer)

tanh has same shape as sigmoid but
has output range ±1

Results about approximation capability
using sigmoid layers also apply to tanh
layers

Possible reason to prefer tanh over
sigmoid: allowing units to be positive
or negative allows gradient for weights
into a hidden unit to have a different
sign

Saturation still a problem

MLP Lecture 4 / 9 October 2018 Deep Neural Networks (2) 5

tanh hidden units (TanhLayer)

tanh has same shape as sigmoid but
has output range ±1

Results about approximation capability
using sigmoid layers also apply to tanh
layers

Possible reason to prefer tanh over
sigmoid: allowing units to be positive
or negative allows gradient for weights
into a hidden unit to have a different
sign

Saturation still a problem

MLP Lecture 4 / 9 October 2018 Deep Neural Networks (2) 5

tanh hidden units (TanhLayer)

tanh has same shape as sigmoid but
has output range ±1

Results about approximation capability
using sigmoid layers also apply to tanh
layers

Possible reason to prefer tanh over
sigmoid: allowing units to be positive
or negative allows gradient for weights
into a hidden unit to have a different
sign

Saturation still a problem

Hidden

Hidden

h
(2)
H

h
(2)
kh

(2)
1

g
(2)
k

h
(1)
jh

(1)
1

h
(1)
H

MLP Lecture 4 / 9 October 2018 Deep Neural Networks (2) 5

tanh hidden units (TanhLayer)

tanh has same shape as sigmoid but
has output range ±1

Results about approximation capability
using sigmoid layers also apply to tanh
layers

Possible reason to prefer tanh over
sigmoid: allowing units to be positive
or negative allows gradient for weights
into a hidden unit to have a different
sign

Saturation still a problem

Hidden

Hidden

h
(2)
H

h
(2)
kh

(2)
1

g
(2)
k

h
(1)
jh

(1)
1

h
(1)
H

MLP Lecture 4 / 9 October 2018 Deep Neural Networks (2) 5

Rectified Linear Unit – ReLU

relu(x) = max(0, x)

Derivative:

d

dx
relu(x) =

{
0 if x ≤ 0

1 if x > 0

MLP Lecture 4 / 9 October 2018 Deep Neural Networks (2) 6

ReLU hidden units (ReluLayer)

Similar approximation results to tanh and sigmoid hidden units

Empirical results for speech and vision show consistent improvements using relu
over sigmoid or tanh

Unlike tanh or sigmoid there is no positive saturation – saturation results in very
small derivatives (and hence slower learning)

Negative input to relu results in zero gradient (and hence no learning)

Relu is computationally efficient: max(0, x)

Relu units can “die” (i.e. respond with 0 to everything)

Relu units can be very sensitive to the learning rate

MLP Lecture 4 / 9 October 2018 Deep Neural Networks (2) 7

ReLU hidden units (ReluLayer)

Similar approximation results to tanh and sigmoid hidden units

Empirical results for speech and vision show consistent improvements using relu
over sigmoid or tanh

Unlike tanh or sigmoid there is no positive saturation – saturation results in very
small derivatives (and hence slower learning)

Negative input to relu results in zero gradient (and hence no learning)

Relu is computationally efficient: max(0, x)

Relu units can “die” (i.e. respond with 0 to everything)

Relu units can be very sensitive to the learning rate

MLP Lecture 4 / 9 October 2018 Deep Neural Networks (2) 7

Generalisation

Generalization

Generalization:

what is the expected error on a test set?
how to compare the accuracy of different networks trained on the same data?

Causes of error

Network too flexible: Too many weights compared with number of training examples
Network not flexible enough: Not enough weights (hidden units) to represent the
desired mapping

When comparing models, it can be helpful to compare systems with the same
number of trainable parameters (i.e. the number of trainable weights in a neural
network)

Optimizing training set performance does not necessarily optimize test set
performance....

MLP Lecture 4 / 9 October 2018 Deep Neural Networks (2) 8

Training / Test / Validation Data

Partitioning the data...

Training data – data used for training the network
Validation data – frequently used to measure the error of a network on “unseen”
data (e.g. after each epoch)
Test data – less frequently used “unseen” data, ideally only used once

Frequent use of the same test data can indirectly “tune” the network to that data
(e.g. by influencing choice of hyperparameters such as learning rate, number of
hidden units, number of layers,)

MLP Lecture 4 / 9 October 2018 Deep Neural Networks (2) 9

Measuring generalisation

Generalization Error – The predicted error on unseen data. How can the
generalization error be estimated?

Training error?

Etrain = −
∑

training set

K∑

k=1

tnk ln yn
k

Validation error?

Eval = −
∑

validation set

K∑

k=1

tnk ln yn
k

MLP Lecture 4 / 9 October 2018 Deep Neural Networks (2) 10

Cross-validation

Optimize network performance given a fixed training set

Hold out a set of data (validation set) and predict generalization performance on
this set

1 Train network in usual way on training data
2 Estimate performance of network on validation set

If several networks trained on the same data, choose the one that performs best
on the validation set (not the training set)

n-fold Cross-validation: divide the data into n partitions; select each partition in
turn to be the validation set, and train on the remaining (n − 1) partitions.
Estimate generalization error by averaging over all validation sets.

MLP Lecture 4 / 9 October 2018 Deep Neural Networks (2) 11

Overtraining

Overtraining corresponds to a network function too closely fit to the training set
(too much flexibility)

Undertraining corresponds to a network function not well fit to the training set
(too little flexibility)

Solutions

If possible increasing both network complexity in line with the training set size
Use prior information to constrain the network function
Control the flexibility: Structural Stabilization
Control the effective flexibility: early stopping and regularization

MLP Lecture 4 / 9 October 2018 Deep Neural Networks (2) 12

Structural Stabilization

Directly control the number of weights:

Compare models with different numbers of hidden units

Start with a large network and reduce the number of weights by pruning individual
weights or hidden units

Weight sharing — use prior knowledge to constrain the weights on a set of
connections to be equal.
→ Convolutional Neural Networks

MLP Lecture 4 / 9 October 2018 Deep Neural Networks (2) 13

Lab 4: 04 Generalisation and overfitting

Lab 4 explores overfitting and how we can measure how well the models we train
generalise their predictions to unseen data.

Setting up a 1-dimension regression problem

Using a radial basis functions (RBF) network as a model for this problem

Exploring the behaviour of the RBF network as the number of model parameters
(basis functions) increases

MLP Lecture 4 / 9 October 2018 Deep Neural Networks (2) 14

Early Stopping

Use validation set to decide when to stop training

Training Set Error monotonically decreases as training progresses

Validation Set Error will reach a minimum then start to increase

Best generalization predicted to be at point of minimum validation set error

“Effective Flexibility” increases as training progresses

Network has an increasing number of “effective degrees of freedom” as training
progresses

Network weights become more tuned to training data

Very effective — used in many practical applications such as speech recognition
and optical character recognition

MLP Lecture 4 / 9 October 2018 Deep Neural Networks (2) 15

Early Stopping

Use validation set to decide when to stop training

Training Set Error monotonically decreases as training progresses

Validation Set Error will reach a minimum then start to increase

Best generalization predicted to be at point of minimum validation set error

“Effective Flexibility” increases as training progresses

Network has an increasing number of “effective degrees of freedom” as training
progresses

Network weights become more tuned to training data

Very effective — used in many practical applications such as speech recognition
and optical character recognition

MLP Lecture 4 / 9 October 2018 Deep Neural Networks (2) 15

Early Stopping

Use validation set to decide when to stop training
Training Set Error monotonically decreases as training progresses
Validation Set Error will reach a minimum then start to increase
Best generalization predicted to be at point of minimum validation set error

Validation

Training

E

tt*

“Effective Flexibility” increases as training progresses
Network has an increasing number of “effective degrees of freedom” as training
progresses
Network weights become more tuned to training data
Very effective — used in many practical applications such as speech recognition
and optical character recognition

MLP Lecture 4 / 9 October 2018 Deep Neural Networks (2) 15

Early Stopping

Use validation set to decide when to stop training

Training Set Error monotonically decreases as training progresses

Validation Set Error will reach a minimum then start to increase

Best generalization predicted to be at point of minimum validation set error

“Effective Flexibility” increases as training progresses

Network has an increasing number of “effective degrees of freedom” as training
progresses

Network weights become more tuned to training data

Very effective — used in many practical applications such as speech recognition
and optical character recognition

MLP Lecture 4 / 9 October 2018 Deep Neural Networks (2) 15

Early Stopping

Use validation set to decide when to stop training
Training Set Error monotonically decreases as training progresses
Validation Set Error will reach a minimum then start to increase
Best generalization predicted to be at point of minimum validation set error

Validation

Training

E

tt*

“Effective Flexibility” increases as training progresses
Network has an increasing number of “effective degrees of freedom” as training
progresses
Network weights become more tuned to training data
Very effective — used in many practical applications such as speech recognition
and optical character recognition

MLP Lecture 4 / 9 October 2018 Deep Neural Networks (2) 15

Early Stopping

Use validation set to decide when to stop training

Training Set Error monotonically decreases as training progresses

Validation Set Error will reach a minimum then start to increase

Best generalization predicted to be at point of minimum validation set error

Validation

Training

E

tt*

“Effective Flexibility” increases as training progresses

Network has an increasing number of “effective degrees of freedom” as training
progresses

Network weights become more tuned to training data

Very effective — used in many practical applications such as speech recognition
and optical character recognition

Why does early stopping
improve generalisation?

MLP Lecture 4 / 9 October 2018 Deep Neural Networks (2) 15

Generalisation by design

Regularisation – penalise the weights: L1 (sparsity), L2 (weight decay)

Data augmentation – generate additional (noisy) training data

Model combination – smooth together multiple networks

Dropout – randomly delete a fraction of hidden units each minibatch

Parameter sharing – e.g. convolutional networks

MLP Lecture 4 / 9 October 2018 Deep Neural Networks (2) 16

Weight Decay (L2 Regularisation)

Weight decay puts a “spring” on weights

If training data puts a consistent force on a weight, it will outweigh weight decay

If training does not consistently push weight in a direction, then weight decay will
dominate and weight will decay to 0

Without weight decay, weight would walk randomly without being well determined
by the data

Weight decay can allow the data to determine how to reduce the effective number
of parameters

MLP Lecture 4 / 9 October 2018 Deep Neural Networks (2) 17

Penalizing Complexity

Consider adding a complexity term Ew to the network error function, to encourage
smoother mappings:

En = En
train︸ ︷︷ ︸

data term

+ βEW︸ ︷︷ ︸
prior term

Etrain is the usual error function:

En
train = −

K∑

k=1

tnk ln ynk

EW should be a differentiable flexiblity/complexity measure, e.g.

EW = EL2 =
1

2

∑

i

w2
i

∂EL2

∂wi
= wi

MLP Lecture 4 / 9 October 2018 Deep Neural Networks (2) 18

Penalizing Complexity

Consider adding a complexity term Ew to the network error function, to encourage
smoother mappings:

En = En
train︸ ︷︷ ︸

data term

+ βEW︸ ︷︷ ︸
prior term

Etrain is the usual error function:

En
train = −

K∑

k=1

tnk ln ynk

EW should be a differentiable flexiblity/complexity measure, e.g.

EW = EL2 =
1

2

∑

i

w2
i

∂EL2

∂wi
= wi

MLP Lecture 4 / 9 October 2018 Deep Neural Networks (2) 18

Penalizing Complexity

Consider adding a complexity term Ew to the network error function, to encourage
smoother mappings:

En = En
train︸ ︷︷ ︸

data term

+ βEW︸ ︷︷ ︸
prior term

Etrain is the usual error function:

En
train = −

K∑

k=1

tnk ln ynk

EW should be a differentiable flexiblity/complexity measure, e.g.

EW = EL2 =
1

2

∑

i

w2
i

∂EL2

∂wi
= wi

MLP Lecture 4 / 9 October 2018 Deep Neural Networks (2) 18

Gradient Descent Training with Weight Decay

∂En

∂wi
=
∂(En

train + EL2)

∂wi
=

(
∂En

train

∂wi
+ β

∂EL2

∂wi

)

=

(
∂En

train

∂wi
+ βwi

)

∆wi = −η
(
∂En

train

∂wi
+ βwi

)

Weight decay corresponds to adding EL2 = 1/2
∑

i w
2
i to the error function

Addition of complexity terms is called regularisation

When used with gradient descent, weight decay corresponds to L2 regularisation

MLP Lecture 4 / 9 October 2018 Deep Neural Networks (2) 19

L1 Regularisation

L1 Regularisation corresponds to adding a term based on summing the absolute
values of the weights to the error:

En = En
train︸ ︷︷ ︸

data term

+ βEn
L1︸ ︷︷ ︸

prior term

= En
train + β|wi |

Gradients

∂En

∂wi
=
∂En

train

∂wi
+ β

∂EL1

∂wi

=
∂En

train

∂wi
+ β sgn(wi)

Where sgn(wi) is the sign of wi :
sgn(wi) = 1 if wi > 0 and sgn(wi) = −1 if wi < 0

MLP Lecture 4 / 9 October 2018 Deep Neural Networks (2) 20

L1 vs L2

L1 and L2 regularisation both have the effect of penalising larger weights

In L2 they shrink to 0 at a rate proportional to the size of the weight (βwi)
In L1 they shrink to 0 at a constant rate (β sgn(wi))

Behaviour of L1 and L2 regularisation with large and small weights:

when |wi | is large L2 shrinks faster than L1
when |wi | is small L1 shrinks faster than L2

So L1 tends to shrink some weights to 0, leaving a few large important
connections – L1 encourages sparsity

∂EL1/∂w is undefined when w = 0; assume it is 0 (i.e. take sgn(0) = 0 in the
update equation)

MLP Lecture 4 / 9 October 2018 Deep Neural Networks (2) 21

Data Augmentation – Adding “fake” training data

Generalisation performance goes with the amount of training data (change
MNISTDataProvider to give training sets of 1 000 / 5 000 / 10 000 examples to
see this)

Given a finite training set we could create further training examples...

Create new examples by making small rotations of existing data
Add a small amount of random noise

Using “realistic” distortions to create new data is better than adding random noise

MLP Lecture 4 / 9 October 2018 Deep Neural Networks (2) 22

Model Combination

Combining the predictions of multiple models can reduce overfitting

Model combination works best when the component models are complementary –
no single model works best on all data points

Creating a set of diverse models

Different NN architectures (number of hidden units, number of layers, hidden unit
type, input features, type of regularisation, ...)
Different models (NN, SVM, decision trees, ...)

How to combine models?

Average their outputs
Linearly combine their outputs
Train another “combiner” neural network whose input is the outputs of the
component networks
Architectures designed to create a set of specialised models which can be combined
(e.g. mixtures of experts)

MLP Lecture 4 / 9 October 2018 Deep Neural Networks (2) 23

Lab 5: 05 Regularisation

Lab 5 explores different methods for regularising networks to reduce overfitting and
improve generalisation
In the context of a feed-forward network using ReLU hidden layers, the lab explores

L1 and L2 regularisation

Data augmentation

MLP Lecture 4 / 9 October 2018 Deep Neural Networks (2) 24

Summary

Tanh and ReLU

Generalisation and overfitting

Preventing overfitting

L2 regularisation – weight decay
L1 regularisation – sparsity
Creating additional training data
Model combination

Reading:

Nielsen, chapter 3 (section on overfitting and regularization) of Neural Networks and
Deep Learning
http://neuralnetworksanddeeplearning.com/chap3.html#overfitting_

and_regularization

Goodfellow et al, chapter 7 Deep Learning (sections 7.1–7.5)
http://www.deeplearningbook.org/contents/regularization.html

MLP Lecture 4 / 9 October 2018 Deep Neural Networks (2) 25

http://neuralnetworksanddeeplearning.com/chap3.html#overfitting_and_regularization
http://neuralnetworksanddeeplearning.com/chap3.html#overfitting_and_regularization
http://www.deeplearningbook.org/contents/regularization.html

