
Deep Neural Networks (1)
Hidden layers; Back-propagation

Steve Renals

Machine Learning Practical — MLP Lecture 3
2 October 2018

http://www.inf.ed.ac.uk/teaching/courses/mlp/

MLP Lecture 3 / 2 October 2018 Deep Neural Networks (1) 1

http://www.inf.ed.ac.uk/teaching/courses/mlp/

Recap: Softmax single layer network

+ + +

class 1 class 2 class 3

softmax

inputs

MLP Lecture 3 / 2 October 2018 Deep Neural Networks (1) 2

What Do

Neural Networks Do?

What Do

Single Layer

Neural Networks Do?

Single layer network

Single-layer network, 1 output, 2 inputs

+

x1 x2

MLP Lecture 3 / 2 October 2018 Deep Neural Networks (1) 3

Geometric interpretation

Single-layer network, 1 output, 2 inputs

w

� b

||w||

x1

x2

y(x;w) = 0

Bishop, sec 3.1 MLP Lecture 3 / 2 October 2018 Deep Neural Networks (1) 4

Single layer network

Single-layer network, 3 outputs, 2 inputs

+

x1 x2

++

MLP Lecture 3 / 2 October 2018 Deep Neural Networks (1) 5

Example data (three classes)

−4 −3 −2 −1 0 1 2 3 4 5
−4

−3

−2

−1

0

1

2

3

4

5
Data

MLP Lecture 3 / 2 October 2018 Deep Neural Networks (1) 6

Classification regions with single-layer network

−4 −3 −2 −1 0 1 2 3 4 5
−4

−3

−2

−1

0

1

2

3

4

5
Plot of Decision regions

Single-layer networks are limited to linear classification boundaries

MLP Lecture 3 / 2 October 2018 Deep Neural Networks (1) 7

Single layer network trained on MNIST Digits

0
10 Outputs

784 Inputs

784x10 weight matrix

1 2 3 4 5 6 7 8 9

. . . .

28x28

Weights of each output unit define a “template” for the class

MLP Lecture 3 / 2 October 2018 Deep Neural Networks (1) 8

Hinton Diagrams

Visualise the weights for class k

. . . .
400 (20x20) inputs

MLP Lecture 3 / 2 October 2018 Deep Neural Networks (1) 9

Hinton diagram for single layer network trained on MNIST

Weights for each class act as a “discriminative template”

Inner product of class weights and input to measure closeness to each template

Classify to the closest template (maximum value output)

0 1

2 3

MLP Lecture 3 / 2 October 2018 Deep Neural Networks (1) 10

Hinton diagram for single layer network trained on MNIST

Weights for each class act as a “discriminative template”

Inner product of class weights and input to measure closeness to each template

Classify to the closest template (maximum value output)

0 1

2 3

MLP Lecture 3 / 2 October 2018 Deep Neural Networks (1) 10

Hinton diagram for single layer network trained on MNIST

Weights for each class act as a “discriminative template”

Inner product of class weights and input to measure closeness to each template

Classify to the closest template (maximum value output)

0 1

2 3

What are the pros and cons
of using a single-layer network

for MNIST classification?

MLP Lecture 3 / 2 October 2018 Deep Neural Networks (1) 10

Multi-Layer Networks

From templates to features

Good classification needs to cope with the variability of real data: scale, skew,
rotation, translation,
Very difficult to do with a single template per class
Could have multiple templates per task... this will work, but we can do better

Use features rather than templates

(images from: Nielsen, chapter 1)

MLP Lecture 3 / 2 October 2018 Deep Neural Networks (1) 11

From templates to features

Good classification needs to cope with the variability of real data: scale, skew,
rotation, translation,
Very difficult to do with a single template per class
Could have multiple templates per task... this will work, but we can do better

Use features rather than templates

(images from: Nielsen, chapter 1)
MLP Lecture 3 / 2 October 2018 Deep Neural Networks (1) 11

Incorporating features in neural network architecture

Layered processing: inputs - features - classification

0 1 2 3 4 5 6 7 8 9

. . . .

.

How to obtain features? - learning!

MLP Lecture 3 / 2 October 2018 Deep Neural Networks (1) 12

Incorporating features in neural network architecture

Layered processing: inputs - features - classification

0 1 2 3 4 5 6 7 8 9

. . . .

.

How to obtain features? - learning!

MLP Lecture 3 / 2 October 2018 Deep Neural Networks (1) 12

Incorporating features in neural network architecture

0 1 2 3 4 5 6 7 8 9

. . . .

.

MLP Lecture 3 / 2 October 2018 Deep Neural Networks (1) 13

Incorporating features in neural network architecture

0 1 2 3 4 5 6 7 8 9

. . . .

.

MLP Lecture 3 / 2 October 2018 Deep Neural Networks (1) 13

Incorporating features in neural network architecture

0 1 2 3 4 5 6 7 8 9

. . . .

.

Input
Layer

Softmax
Output
Layer

Sigmoid
Hidden
Layer

MLP Lecture 3 / 2 October 2018 Deep Neural Networks (1) 13

Multi-layer network

. . . .

. . . . g ggg

. . . . + +++

+ + + +. . . .

f f f f. . . .
Softmax

Sigmoid

yk

xi

a
(1)
j

a
(2)
k

w
(2)
kj

w
(1)
ji

Outputs

Inputs

Hidden layerh
(1)
j

b
(2)
k

b
(1)
jAffineLayer.fprop

AffineLayer.fprop

SigmoidLayer.fprop

SoftmaxLayer.fprop

yk = softmax

(
H∑

r=1

w
(2)
kr h

(1)
r + bk

)
h
(1)
j = sigmoid

(
d∑

s=1

w
(1)
js xs + bj

)

MLP Lecture 3 / 2 October 2018 Deep Neural Networks (1) 14

Multi-layer network for MNIST

(image from: Michael Nielsen, Neural Networks and Deep Learning,

http://neuralnetworksanddeeplearning.com/chap1.html)
MLP Lecture 3 / 2 October 2018 Deep Neural Networks (1) 15

http://neuralnetworksanddeeplearning.com/chap1.html

Training multi-layer networks: Credit assignment

Hidden units make training the weights more complicated, since the hidden units
affect the error function indirectly via all the outputs

The credit assignment problem

what is the “error” of a hidden unit?
how important is input-hidden weight w

(1)
ji to output unit k?

What is the gradient of the error with respect to each weight?
(How to compute grads wrt params?)

Solution: back-propagation of error (backprop)

Backprop enables the gradients to be computed. These gradients are used by
gradient descent to train the weights.

MLP Lecture 3 / 2 October 2018 Deep Neural Networks (1) 16

Training multi-layer networks: Credit assignment

Hidden units make training the weights more complicated, since the hidden units
affect the error function indirectly via all the outputs

The credit assignment problem

what is the “error” of a hidden unit?
how important is input-hidden weight w

(1)
ji to output unit k?

What is the gradient of the error with respect to each weight?
(How to compute grads wrt params?)

Solution: back-propagation of error (backprop)

Backprop enables the gradients to be computed. These gradients are used by
gradient descent to train the weights.

MLP Lecture 3 / 2 October 2018 Deep Neural Networks (1) 16

Training multi-layer networks: Credit assignment

Hidden units make training the weights more complicated, since the hidden units
affect the error function indirectly via all the outputs

The credit assignment problem

what is the “error” of a hidden unit?
how important is input-hidden weight w

(1)
ji to output unit k?

What is the gradient of the error with respect to each weight?
(How to compute grads wrt params?)

Solution: back-propagation of error (backprop)

Backprop enables the gradients to be computed. These gradients are used by
gradient descent to train the weights.

MLP Lecture 3 / 2 October 2018 Deep Neural Networks (1) 16

Training output weights

Outputs

Hidden units

xi

w(2)
1 j w(2)

ℓ j

w(1)
ji

yKy�y1

w(2)
K j

hj

MLP Lecture 3 / 2 October 2018 Deep Neural Networks (1) 17

Training output weights

Outputs

Hidden units

xi

w(2)
1 j w(2)

ℓ j

w(1)
ji

yKy�y1

w(2)
K j

hj

g
(2)
K

g
(2)
`g

(2)
1

@En

@w
(2)
kj

= g
(2)
k h

(1)
j

error.grad

grads_wrt_params

MLP Lecture 3 / 2 October 2018 Deep Neural Networks (1) 17

Training MLPs: Error function and required gradients

Cross-entropy error function:

En = −
C∑

k=1

tnk ln ynk

Required gradients (grads wrt params): ∂En

∂w
(2)
kj

∂En

∂w
(1)
ji

∂En

∂b
(2)
k

∂En

∂b
(1)
j

Gradient for hidden-to-output weights similar to single-layer network:

∂En

∂w
(2)
kj

=
∂En

∂z
(2)
k

· ∂z
(2)
k

∂wkj
=

(
C∑

c=1

∂En

∂yc
· ∂yc

∂z
(2)
k

)
· ∂z

(2)
k

∂wkj

= (yk − tk)︸ ︷︷ ︸
g
(2)
k

h
(1)
j

MLP Lecture 3 / 2 October 2018 Deep Neural Networks (1) 18

Training MLPs: Error function and required gradients

Cross-entropy error function:

En = −
C∑

k=1

tnk ln ynk

Required gradients (grads wrt params): ∂En

∂w
(2)
kj

∂En

∂w
(1)
ji

∂En

∂b
(2)
k

∂En

∂b
(1)
j

Gradient for hidden-to-output weights similar to single-layer network:

∂En

∂w
(2)
kj

︸ ︷︷ ︸
grads wrt params

=
∂En

∂z
(2)
k

· ∂z
(2)
k

∂wkj
=

(
C∑

c=1

∂En

∂yc
· ∂yc

∂z
(2)
k

)
· ∂z

(2)
k

∂wkj

= (yk − tk)︸ ︷︷ ︸
error.grad

h
(1)
j

MLP Lecture 3 / 2 October 2018 Deep Neural Networks (1) 18

Back-propagation of error: hidden unit error signal

Outputs

Hidden units

xi

w(2)
1 j w(2)

ℓ j

w(1)
ji

yKy�y1

w(2)
K j

hj

g
(1)
j =

 X

`

g
(2)
l w`j

!
hj(1 � hj)

g
(2)
1 g

(2)
` g

(2)
K

@En

@w
(1)
ji

= g
(1)
j xi

grads_wrt_params

AffineLayer.bprop

SigmoidLayer.bprop

error.grad

MLP Lecture 3 / 2 October 2018 Deep Neural Networks (1) 19

Training MLPs: Input-to-hidden weights

∂En

∂w
(1)
ji

=
∂En

∂z
(1)
j

︸ ︷︷ ︸
g
(1)
j

·
∂z

(1)
j

∂w
(1)
ji︸ ︷︷ ︸
xi

To compute g
(1)
j = ∂En/∂a

(1)
j , error signal for hidden unit j , sum over all output units’

contributions to g
(1)
j :

g
(1)
j =

K∑

c=1

∂En

∂z
(2)
c

· ∂z
(2)
c

∂z
(1)
j

=

K∑

c=1

g
(2)
c · ∂z

(2)
c

∂h
(1)
j

 ·

∂h
(1)
j

∂z
(1)
j

=

(
K∑

c=1

g
(2)
c w

(2)
cj

)
h
(1)
j (1 − h

(1)
j)

MLP Lecture 3 / 2 October 2018 Deep Neural Networks (1) 20

Training MLPs: Input-to-hidden weights

∂En

∂w
(1)
ji

︸ ︷︷ ︸
grads wrt params

=
∂En

∂z
(1)
j

︸ ︷︷ ︸
g
(1)
j

·
∂z

(1)
j

∂w
(1)
ji︸ ︷︷ ︸
xi

To compute g
(1)
j = ∂En/∂a

(1)
j , error signal for hidden unit j , sum over all output units’

contributions to g
(1)
j :

g
(1)
j =

K∑

c=1

∂En

∂z
(2)
c

· ∂z
(2)
c

∂z
(1)
j

=

K∑

c=1

g
(2)
c · ∂z

(2)
c

∂h
(1)
j

 ·

∂h
(1)
j

∂z
(1)
j

=

(
K∑

c=1

g
(2)
c w

(2)
cj

)

︸ ︷︷ ︸
AffineLayer.bprop

h
(1)
j (1 − h

(1)
j)

︸ ︷︷ ︸
SigmoidLayer.bprop

MLP Lecture 3 / 2 October 2018 Deep Neural Networks (1) 20

Training MLPs: Gradients

grads wrt params:

∂En

∂w
(2)
kj

= (yk − tk) · h(1)j

∂En

∂w
(1)
ji

=

(
k∑

c=1

g
(2)
c w

(2)
cj

)
· h(1)j (1 − h

(1)
j) · xi

Exercise: write down expressions for the gradients w.r.t. the biases

∂En

∂b
(2)
k

∂En

∂b
(1)
j

MLP Lecture 3 / 2 October 2018 Deep Neural Networks (1) 21

Training MLPs: Gradients

grads wrt params:

∂En

∂w
(2)
kj

= (yk − tk)︸ ︷︷ ︸
CrossEntropySoftmaxError.grad

·h(1)j

∂En

∂w
(1)
ji

=

(
k∑

c=1

g
(2)
c w

(2)
cj

)

︸ ︷︷ ︸
AffineLayer.bprop

· h
(1)
j (1 − h

(1)
j)

︸ ︷︷ ︸
SigmoidLayer.bprop

·xi

Exercise: write down expressions for the gradients w.r.t. the biases

∂En

∂b
(2)
k

∂En

∂b
(1)
j

MLP Lecture 3 / 2 October 2018 Deep Neural Networks (1) 21

Training MLPs: Gradients

grads wrt params:

∂En

∂w
(2)
kj

= (yk − tk)︸ ︷︷ ︸
CrossEntropySoftmaxError.grad

·h(1)j

∂En

∂w
(1)
ji

=

(
k∑

c=1

g
(2)
c w

(2)
cj

)

︸ ︷︷ ︸
AffineLayer.bprop

· h
(1)
j (1 − h

(1)
j)

︸ ︷︷ ︸
SigmoidLayer.bprop

·xi

Exercise: write down expressions for the gradients w.r.t. the biases

∂En

∂b
(2)
k

∂En

∂b
(1)
j

MLP Lecture 3 / 2 October 2018 Deep Neural Networks (1) 21

Back-propagation of error

The back-propagation of error algorithm is summarised as follows:

1 Apply an input vectors from the training set, x , to the network and forward
propagate to obtain the output vector y

2 Using the target vector t compute the error E n

3 Evaluate the error gradients g
(2)
k for each output unit using error.grad

4 Evaluate the error gradients g
(1)
j for each hidden unit using AffineLayer.bprop

and SigmoidLayer.bprop
5 Evaluate the derivatives (grads wrt params) for each training pattern

Back-propagation can be extended to multiple hidden layers, in each case
computing the g (`)s for the current layer as a weighted sum of the g (`+1)s of the
next layer

MLP Lecture 3 / 2 October 2018 Deep Neural Networks (1) 22

Training with multiple hidden layers

Outputs

g
(3)
1 g

(3)
` g

(3)
K

Hidden

Hidden

y1 y` yK

w
(3)
1k

w
(3)
`k

w
(3)
Kk

w
(2)
1j

w
(2)
kj

w
(2)
Hj

h
(2)
Hh

(2)
k

h
(2)
1

g
(2)
1 g

(2)
k

g
(2)
H

h
(1)
j

w
(1)
ji

g
(1)
j

xi
Inputs

g
(2)
k =

 X

m

g(3)
m wmk

!
h

(2)
k (1 � h

(2)
k)

@En

@w
(2)
kj

= g
(2)
k h

(1)
j

MLP Lecture 3 / 2 October 2018 Deep Neural Networks (1) 23

Training with multiple hidden layers

Outputs

g
(3)
1 g

(3)
` g

(3)
K

Hidden

Hidden

y1 y` yK

w
(3)
1k

w
(3)
`k

w
(3)
Kk

w
(2)
1j

w
(2)
kj

w
(2)
Hj

h
(2)
Hh

(2)
k

h
(2)
1

g
(2)
1 g

(2)
k

g
(2)
H

h
(1)
j

w
(1)
ji

g
(1)
j

xi
Inputs

g
(2)
k =

 X

m

g(3)
m wmk

!
h

(2)
k (1 � h

(2)
k)

@En

@w
(2)
kj

= g
(2)
k h

(1)
j

AffineLayer.fprop

AffineLayer.fprop

AffineLayer.fprop

SoftmaxLayer.fprop

SigmoidLayer.fprop

SigmoidLayer.fprop

SoftmaxLayer.bprop

AffineLayer.bprop

AffineLayer.bprop

SigmoidLayer.bprop

SigmoidLayer.bprop

CrossEntropyError.grad

MLP Lecture 3 / 2 October 2018 Deep Neural Networks (1) 23

Training with multiple hidden layers

Outputs

g
(3)
1 g

(3)
` g

(3)
K

Hidden

Hidden

y1 y` yK

w
(3)
1k

w
(3)
`k

w
(3)
Kk

w
(2)
1j

w
(2)
kj

w
(2)
Hj

h
(2)
Hh

(2)
k

h
(2)
1

g
(2)
1 g

(2)
k

g
(2)
H

h
(1)
j

w
(1)
ji

g
(1)
j

xi
Inputs

g
(2)
k =

 X

m

g(3)
m wmk

!
h

(2)
k (1 � h

(2)
k)

@En

@w
(2)
kj

= g
(2)
k h

(1)
j

AffineLayer.fprop

AffineLayer.fprop

AffineLayer.fprop

SigmoidLayer.fprop

SigmoidLayer.fprop

AffineLayer.bprop

AffineLayer.bprop

SigmoidLayer.bprop

SigmoidLayer.bprop

CrossEntropySoftmaxError.grad

MLP Lecture 3 / 2 October 2018 Deep Neural Networks (1) 23

Are there alternatives
to Sigmoid Hidden Units?

Sigmoid function

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a

g(
a)

Logistic sigmoid activation function g(a) = 1/(1+exp(−a))

Sigmoid Hidden Units (SigmoidLayer)

Compress unbounded inputs to (0,1), saturating high magnitudes to 1

Interpretable as the probability of a feature defined by their weight vector

Interpretable as the (normalised) firing rate of a neuron

However...

Saturation causes gradients to approach 0

If the output of a sigmoid unit is h, then the gradient is h(1 − h) which approaches 0
as h saturates to 0 or 1 – hence the gradients it multiplies into approach 0.
Small gradients result in small parameter changes, so learning becomes slow

Outputs are not centred at 0

The output of a sigmoid layer will have mean> 0 – numerically undesirable.

MLP Lecture 3 / 2 October 2018 Deep Neural Networks (1) 24

Sigmoid Hidden Units (SigmoidLayer)

Compress unbounded inputs to (0,1), saturating high magnitudes to 1

Interpretable as the probability of a feature defined by their weight vector

Interpretable as the (normalised) firing rate of a neuron

However...

Saturation causes gradients to approach 0

If the output of a sigmoid unit is h, then the gradient is h(1 − h) which approaches 0
as h saturates to 0 or 1 – hence the gradients it multiplies into approach 0.
Small gradients result in small parameter changes, so learning becomes slow

Outputs are not centred at 0

The output of a sigmoid layer will have mean> 0 – numerically undesirable.

MLP Lecture 3 / 2 October 2018 Deep Neural Networks (1) 24

tanh

tanh(x) =
ex − e−x

ex + e−x

sigmoid(x) =
1 + tanh(x/2)

2

Derivative:

d

dx
tanh(x) = 1 − tanh2(x)

MLP Lecture 3 / 2 October 2018 Deep Neural Networks (1) 25

tanh hidden units (TanhLayer)

tanh has same shape as sigmoid but
has output range ±1

Results about approximation capability
using sigmoid layers also apply to tanh
layers

Possible reason to prefer tanh over
sigmoid: allowing units to be positive
or negative allows gradient for weights
into a hidden unit to have a different
sign

Saturation still a problem

MLP Lecture 3 / 2 October 2018 Deep Neural Networks (1) 26

tanh hidden units (TanhLayer)

tanh has same shape as sigmoid but
has output range ±1

Results about approximation capability
using sigmoid layers also apply to tanh
layers

Possible reason to prefer tanh over
sigmoid: allowing units to be positive
or negative allows gradient for weights
into a hidden unit to have a different
sign

Saturation still a problem

MLP Lecture 3 / 2 October 2018 Deep Neural Networks (1) 26

tanh hidden units (TanhLayer)

tanh has same shape as sigmoid but
has output range ±1

Results about approximation capability
using sigmoid layers also apply to tanh
layers

Possible reason to prefer tanh over
sigmoid: allowing units to be positive
or negative allows gradient for weights
into a hidden unit to have a different
sign

Saturation still a problem

Hidden

Hidden

h
(2)
H

h
(2)
kh

(2)
1

g
(2)
k

h
(1)
jh

(1)
1

h
(1)
H

MLP Lecture 3 / 2 October 2018 Deep Neural Networks (1) 26

tanh hidden units (TanhLayer)

tanh has same shape as sigmoid but
has output range ±1

Results about approximation capability
using sigmoid layers also apply to tanh
layers

Possible reason to prefer tanh over
sigmoid: allowing units to be positive
or negative allows gradient for weights
into a hidden unit to have a different
sign

Saturation still a problem

Hidden

Hidden

h
(2)
H

h
(2)
kh

(2)
1

g
(2)
k

h
(1)
jh

(1)
1

h
(1)
H

MLP Lecture 3 / 2 October 2018 Deep Neural Networks (1) 26

Rectified Linear Unit – ReLU

relu(x) = max(0, x)

Derivative:

d

dx
relu(x) =

{
0 if x ≤ 0

1 if x > 0

MLP Lecture 3 / 2 October 2018 Deep Neural Networks (1) 27

ReLU hidden units (ReluLayer)

Similar approximation results to tanh and sigmoid hidden units

Empirical results for speech and vision show consistent improvements using relu
over sigmoid or tanh

Unlike tanh or sigmoid there is no positive saturation – saturation results in very
small derivatives (and hence slower learning)

Negative input to relu results in zero gradient (and hence no learning)

Relu is computationally efficient: max(0, x)

Relu units can “die” (i.e. respond with 0 to everything)

Relu units can be very sensitive to the learning rate

MLP Lecture 3 / 2 October 2018 Deep Neural Networks (1) 28

ReLU hidden units (ReluLayer)

Similar approximation results to tanh and sigmoid hidden units

Empirical results for speech and vision show consistent improvements using relu
over sigmoid or tanh

Unlike tanh or sigmoid there is no positive saturation – saturation results in very
small derivatives (and hence slower learning)

Negative input to relu results in zero gradient (and hence no learning)

Relu is computationally efficient: max(0, x)

Relu units can “die” (i.e. respond with 0 to everything)

Relu units can be very sensitive to the learning rate

MLP Lecture 3 / 2 October 2018 Deep Neural Networks (1) 28

Lab 3: 03 Multiple layer models

Lab 3 covers how multiple layer networks are modelled in the mlp framework.

Representing activation functions as layer, applied after a linear (affine) layer

Stacking layers together to build multi-layer networks with non-linear activation
functions (e.g. sigmoid) for the hidden layer

Using Layer.fprop methods to implement the forward propagation and and
Layer.bprop methods to implement back propagation to compute the gradients

Training softmax models on MNIST

Training deeper multi-layer networks on MNIST

Using various non-linear activation functions for the hidden layer (sigmoid, tanh,
relu)

MLP Lecture 3 / 2 October 2018 Deep Neural Networks (1) 29

Summary

Understanding what single-layer networks compute

How multi-layer networks allow feature computation

Training multi-layer networks using back-propagation of error

Tanh and ReLU activation functions

Multi-layer networks are also referred to as deep neural networks or
multi-layer perceptrons

Reading:

Nielsen, chapter 2
Goodfellow, sections 6.3, 6.4, 6.5
Bishop, sections 3.1, 3.2, and chapter 4

MLP Lecture 3 / 2 October 2018 Deep Neural Networks (1) 30

