
Project Discovery Guide and Example Project Lists

1. Preface
This document contains guidelines and ideas for designing a
semester 2 project for the MLP course. The listed ideas are
non-exhaustive, and in no way do they represent the space
of possible projects. They are merely a tool provided to you,
so you can create your own project, by simply combining
the provided tips and ideas.

The difficulty of a project, can be hard to define and/or
measure, mainly because it is relative to the context of a
particular project (e.g. some are difficult to built and easy
to mentally come up with, while others can be easy to build
and hard to come up with), the competency and experience
of the people undertaking it, as well as the actual resources
available for the project (e.g. in terms of compute, financial
funding etc.).

For this reason, we decided to introduce the abstract notion
of the challenge level. The challenge level is a measuring
tool attempting to quantify projects in terms of how an
average MLP student would perceive the difficulty of a
project once it has engaged with the said project. This tool
was created by the MLP courses instructors experience and
intuition, and should not be taken as an objective measure
of difficulty, but rather as a signal source to be used to select
a project.

2. How to use this guide
1. Read through the types of suggested projects.

2. Choose 3 projects/topics that interest you.

3. Read the associated papers/resources if any.

4. Isolate to 2 topics/projects.

5. Discuss with your appointed tutor or course TA.

6. Design a project with your tutor or the TA. Make sure
to clearly define backup plans and contingencies for
high-risk ideas/experiments. This will help with risk
management and minimization.

7. Start working on your project.

8. Meet with your tutor every week to report your
progress and receive advice and guidance on how to
proceed. Note: If additional help is needed, simply

drop by MLP-Base sessions, which take place every
day from Monday to Friday at 1700-1800 at A.T. 7.03

Note: If you need help with designing or evaluating the dif-
ficulty/feasibility of a project, please contact your appointed
tutor or the MLP TA (a.antoniou@sms.ed.ac.uk).

3. Types of projects
Each project type is not a discrete variable, but rather a
continuous variable. Projects can start as dataset-driven
and evolve into method-driven or even innovation-driven
projects, or the other way around. Sometimes to innovate
you need to build a new setting and a new dataset.

1. Dataset-driven (The challenge level starts from 3/10 for
this type): Choose an interesting dataset (e.g. Painters
By Numbers, CelebA, Mini-Imagenet, CIFAR10/100
etc.) Come up with interesting tasks to use the data on
(e.g. Classification, Generation (GANs), Translation
(Dogs to Cats, English to Japanese), etc.). For a more
detailed list of methods see below.

(a) Apply method to the dataset, observe the perfor-
mance of the system.

(b) Investigate the method architecture/setup and at-
tempt to improve the performance of the baseline
model. (i.e. improve classification accuracy, im-
prove sample quality/relevance or some kind of
generation loss, improve cross entropy loss etc.).
This can be done via exploration of architectures,
data augmentation strategies, loss functions or
reqularization methods.

(c) Once you have explored and improved the perfor-
mance of the system, you can also try to add your
own novel feature on top of it, to push the novelty
of your work further.

2. Method-driven (The challenge level starts from 5/10
for this type):

(a) Choose an interesting method/task/learning
paradigm. For your convenience, we include a list
of the topics/areas that a lot of experts consider
the ones with the most potential:
i. GANs [11, 12, 38, 19, 2]
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ii. Reinforcement Learning [6, 5, 4, 28, 34, 14]
iii. Meta Learning [10, 1, 36, 35, 24, 3, 23]
iv. Relational Reasoning [27]
v. Genetic Algorithms for Deep Learning [24,

26]
vi. Classification via Deep Learning [13, 18, 24,

20]
vii. Adversarial Attacks/Defences [31];

https://github.com/yenchenlin/
awesome-adversarial-machine-
learning

viii. Transfer Learning [15, 37, 21]
ix. Domain Adaptation [32]
x. Life-long Learning [22]

xi. Network Visualization [29, 30]
xii. Network Compression [17] (See lecture 15)

xiii. Multi-task Learning [7, 25]
xiv. Sequence-to-sequence models [9, 16]

(b) Read that topics/methods associated papers.
(c) Continue your literature review towards the di-

rections to seem interesting. (Read some more
papers in that direction) Try to come up with an
idea for a project based on what you have read,
your own interests and your own subjective view
of “interestingness” and “fun”. If something gets
you excited or intrigued, it is probably something
you will, at the very least, enjoy working on.

(d) Take your topic and/or ideas to your tutor or the
MLP TA or the daily MLP-base, to help you de-
sign a project.

(e) Start your project and follow the general project
guidelines showed in section 2

3. Concept-driven/Innovation-driven (The challenge level
starts from 8/10 for this type): Projects under this type
usually attempt to implement a new concept or to im-
prove existing methods with out of the box ideas. Peo-
ple who choose these kinds of projects, have probably
read a substantial amount of papers, and have also
coded their own models in the past, enough for them to
have creative ideas and good intuition in their chosen
task.

(a) Read many papers from a chosen topic
(b) Implement favourite methods from scratch, to get

very strong intuitions on how the techniques be-
have.

(c) Combine all you have learned and either try to
improve an existing method or come up with a
brand new concept that attempts to solve a par-
ticular problem, or even, come up with a novel
task/problem, and try to solve said tasks.

(d) Meet with your tutor or MLP TA to design a
project and to make sure the project is feasible.

(e) Meet weekly with your tutor to report progress.

4. List of projects
4.1. Dataset-driven:

1. Train classifier to predict the artist that draw a particu-
lar painting, given the painting itself. Use paintings by
numbers as your dataset.

2. Train generative models that can do cool things with
paintings, perhaps training a CycleGAN, to translate
paintings between styles or artists. I.e. make a Picasso
into a matisse

3. Use CIFAR10/100, train existing SOTA models, and
then investigate novel data augmentation strategies or
novel architectures to improve current SOTA.

4. Use Omniglot, and using only 5 samples frome each
class attempt to build a classifier that has strong gener-
alization on the left over samples.

5. Explore approaches to emotion recognition using the
IEMOCAP dataset [8]

6. Audio event detection using one of the datasets used
in the 2018 DCASE Challenge (http://dcase.
community/challenge2018/)

7. For regression problems explore using the discretised
softmax regression approach used in wavenet [33]

4.2. Method-driven:

1. GANs:

(a) Use a Cycle GAN and learn to translate cats into
dogs, or people into pokemon or cats into people?

2. Reinfocement Learning:

(a) Use the PPO RL algorithm in a novel OpenAI
GYM environment and tune the deep net architec-
ture to improve performance.

3. Meta-Learning:

(a) Use existing MAML++ code, but train outer loop
using genetic algorithms instead of SGD.

(b) Exploring the effect of architectures on the perfor-
mance of MAML/MAML++ models.

4. Relational Reasoning:

(a) Use relational reasoning in a novel task, such as
inside a GAN to improve relational capabilities
of the discriminator and generator. Compare and
contrast sample quality.

https://github.com/yenchenlin/awesome-adversarial-machine-learning
https://github.com/yenchenlin/awesome-adversarial-machine-learning
https://github.com/yenchenlin/awesome-adversarial-machine-learning
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(b) Improve on existing relational reasoning methods,
via Hyper-Relational Networks, this project was
a project that Antreas Antoniou wanted to try in
the future, but would be willing to instead give to
a student. Contact him for more information.

5. Genetic Algorithms:

(a) Replace SGD with G.A. in classification by deep
neural networks, evaluate and compare with SGD.

(b) Use G.A to tune reqularization hyper-parameters
(dropout, l1, l2 etc.). Or, use G.A to learn the best
augmentation strategy.

(c) Use G.A to tune Adam.

6. Transfer learning:

(a) analyse different regularization strategies for fine-
tuning (See lecture 14).

(b) analyse influence of unbalanced number of im-
ages per category and test different strategies to
fix it.

(c) given a set of pretrained networks on different
datasets and find the best option for a target task.

7. Network compression:

(a) Analyse the use of different compression tech-
niques such as group convolutions and minimize
number of parameters while retaining good per-
formance on a dataset (See lecture 15).

(b) Use network distillation to transfer knowledge of
a big teacher network to a small student network
(See lecture 15).

(c) Take a pretrained network and prune some of its
filters with a minimum drop in its performance
(See lecture 15).

8. Life-long learning:

(a) Train a network on one task first and then fine-
tune another one. How can we ensure that the
network does not forget about the first dataset?

9. Network design:

(a) Analyse influence of various design choices (pool-
ing, dilated convolutions, etc) on multiple datasets
and analyse whether a design decision on one
dataset generalizes to another one.

10. Multi-task learning:

(a) Train a single network on multiple datasets jointly.
Design a network that shares most of the layers
across different tasks, find the best layer sharing
configuration.

(b) Train a network on multiple loss functions and
design a weighting strategy to balance the loss
functions.
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