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Simple recurrent network
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Vanishing and exploding gradients

e BPTT involves taking the product of many gradients (as in a very deep network)
— this can lead to vanishing (component gradients less than 1) or exploding
(greater than 1) gradients

@ This can prevent effective training

@ Modified optimisation algorithms

o RMSProp (and similar algorithms) — normalise the gradient for each weight by
average of it magnitude, with a learning rate for each weight

o Hessian-free — an approximation to second-order approaches which use curvature
information

@ Modified hidden unit transfer functions:

Long short term memory (LSTM)

o Linear self-recurrence for each hidden unit (long-term memory)
o Gates - dynamic weights which are a function of their inputs
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Simple recurrent network unit
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Simple recurrent network unit

h(t-1) -=---=-- B(t) -=--eeeeeeoes >
g(t) = thx(t) + Whhh(t — 1) + by
h(t) = tanh (g(t))
gt
Whn \W
A— > h(t-1) x()

MLP Lecture 10 5



g(t)
—_—
Whin \Who
e > h(t-1) x(t)

MLP Lecture 10 6



LSTM — Internal recurrent state
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LSTM — Internal recurrent state

e 1 P — > e Internal recurrent state (“cell”)

| c(t) combines previous state
c(t —1) and LSTM input g(t)

@ Gates - weights dependent on the
current input and the previous state
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LSTM — Input Gate

e Internal recurrent state (“cell”)
c(t) combines previous state
c(t —1) and LSTM input g(t)

@ Gates - weights dependent on the
current input and the previous state

o Input gate: controls how much
input to the unit g(t) is written to
the internal state c(t)
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LSTM — Forget Gate

e Internal recurrent state (“cell”)
c(t) combines previous state
c(t —1) and LSTM input g(t)

@ Gates - weights dependent on the
current input and the previous state

oft-1) :F(‘? (), h(t-1)] @ Input gate: controls how much
5 =t input to the unit g(t) is written to
the internal state c(t)
It x(1), h(t-1)) o Forget gate: controls how much of
the previous internal state c(t — 1)
is written to the internal state c(t)
e Input and forget gates together
Wi allow the network to control what
information is stored and
overwritten at each step
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LSTM — Input and Forget Gates
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LSTM — Input and Forget Gates
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LSTM — Output Gate

@ Output gate: controls how much
of each unit’s activation is output
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x — by the hidden state — it allows the
&% LSTM cell to keep information that
; X(0), h(t-1)) is not relevant at the current time,

but may be relevant later
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LSTM — Output Gate
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LSTM equations
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LSTM/RNN readings

o Goodfellow et al, chapter 10

e C Olah (2015), Understanding LSTMs,
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

e A Karpathy et al (2015), Visualizing and Understanding Recurrent Networks,
https://arxiv.org/abs/1506.02078
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More gating units
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Gating units in highway networks
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Gating units in highway networks
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Gating units in highway networks
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Srivastava et al, 2015, Training Very Deep Networks, NIPS-2015,
https://arxiv.org/abs/1507.06228
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Mixture of experts
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Mixture of experts
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Mixture of Experts

Jacobs et al (1991), Adaptive Mixtures of Local Experts, http://cognet.mit.edu/node/29931
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Example applications using RNNs
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Example 1: speech recognition with stacked LSTMs

’ input ‘ ’ input ‘ ’ input ‘ ’ input ‘

i l
| Lst™ ﬁ ] LS‘TM H ] LSI“M E ] LSI‘M =
|

recurrent }*

recurrent

| output | | LST™ | |
(a) LSTM T

’ output ‘ ’ LS:FM ‘4_

output (c) LSTMP

(d) DLSTMP

H Sak et al (2014). “Long Short-Term Memory based Recurrent Neural Network

Architectures for Large Scale Acoustic Modelling”, Interspeech.
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Example 2: recurrent encoder-decoder

Machine translation

Decoder
Yr
T“‘_ o | Sutskever et al (2014). "Sequence to
/ Sequence Learning with Neural Networks”,
e K Cho et al (2014). “Learning Phrase
?—?‘ Representations using RNN Encoder-Decoder
X N N for Statistical Machine Translation”, EMNLP.
Encoder
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@ Vanishing gradient problem
@ LSTMs and gating

@ Applications: stacked LSTMs for speech recognition, encoder-decoder for machine
translation

@ More on recurrent networks next semester in NLU, ASR, MT, ....)
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