Recurrent Neural Networks 2: LSTM, gates, and current research

Steve Renals

Machine Learning Practical — MLP Lecture 10 22 November 2017 / 27 November 2017

MLP Lecture 10 Recurrent Neural Networks 2: LSTM, gates, and current research 1

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 • のへで

Vanishing and exploding gradients

- BPTT involves taking the product of many gradients (as in a very deep network)

 this can lead to vanishing (component gradients less than 1) or exploding (greater than 1) gradients
- This can prevent effective training
- Modified optimisation algorithms
 - RMSProp (and similar algorithms) normalise the gradient for each weight by average of it magnitude, with a learning rate for each weight
 - Hessian-free an approximation to second-order approaches which use curvature information
- Modified hidden unit transfer functions:

Long short term memory (LSTM)

- Linear self-recurrence for each hidden unit (long-term memory)
- Gates dynamic weights which are a function of their inputs

イロト イポト イヨト イヨト 三日

LSTM

MLP Lecture 10 Recurrent Neural Networks 2: LSTM, gates, and current research 4

Simple recurrent network unit

$$egin{aligned} \mathbf{g}(t) &= \mathbf{W}_{h extsf{x}}\mathbf{x}(t) + \mathbf{W}_{hh}\mathbf{h}(t-1) + \mathbf{b}_h \ \mathbf{h}(t) &= extsf{tanh}\left(\mathbf{g}(t)
ight) \end{aligned}$$

MLP Lecture 10 Recurrent Neural Networks 2: LSTM, gates, and current research 5

Simple recurrent network unit

$$egin{aligned} \mathbf{g}(t) &= \mathbf{W}_{h extsf{x}}\mathbf{x}(t) + \mathbf{W}_{hh}\mathbf{h}(t-1) + \mathbf{b}_{h} \ \mathbf{h}(t) &= extsf{tanh}\left(\mathbf{g}(t)
ight) \end{aligned}$$

MLP Lecture 10

LSTM

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● の < ⊙

LSTM – Internal recurrent state

• Internal recurrent state ("cell") c(t) combines previous state c(t-1) and LSTM input g(t)

MLP Lecture 10

イロト イポト イヨト イヨト

-

LSTM – Internal recurrent state

- Internal recurrent state ("cell") c(t) combines previous state c(t-1) and LSTM input g(t)
- Gates weights dependent on the current input and the previous state

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

LSTM – Input Gate

- Internal recurrent state ("cell") c(t) combines previous state c(t-1) and LSTM input g(t)
- Gates weights dependent on the current input and the previous state
- Input gate: controls how much input to the unit g(t) is written to the internal state c(t)

イロト イヨト イヨト

LSTM – Forget Gate

- Internal recurrent state ("cell") c(t) combines previous state c(t-1) and LSTM input g(t)
- Gates weights dependent on the current input and the previous state
- Input gate: controls how much input to the unit g(t) is written to the internal state c(t)
- Forget gate: controls how much of the previous internal state c(t-1) is written to the internal state c(t)
 - Input and forget gates together allow the network to control what information is stored and overwritten at each step

LSTM – Input and Forget Gates

$$\mathbf{I}(t) = \sigma \left(\mathbf{W}_{ik} \mathbf{x}(t) + \mathbf{W}_{ih} \mathbf{h}(t-1) + \mathbf{b}_i \right)$$

$$\mathbf{F}(t) = \sigma \left(\mathbf{W}_{fx} \mathbf{x}(t) + \mathbf{W}_{fh} \mathbf{h}(t-1) + \mathbf{b}_f \right)$$

$$\begin{aligned} \mathbf{g}(t) &= \mathbf{W}_{h \times} \mathbf{x}(t) + \mathbf{W}_{h h} \mathbf{h}(t-1) + \mathbf{b}_{h} \\ \mathbf{c}(t) &= \mathbf{F}(t) \circ \mathbf{c}(t-1) + \mathbf{I}(t) \circ \mathbf{g}(t) \end{aligned}$$

 σ is the sigmoid function \circ is element-wise vector multiply

イロト イポト イヨト イヨト

LSTM – Input and Forget Gates

LSTM – Output Gate

• Output gate: controls how much of each unit's activation is output by the hidden state – it allows the LSTM cell to keep information that is not relevant at the current time, but may be relevant later

イロト イポト イヨト イヨト

-

LSTM – Output Gate

$$\begin{split} \mathbf{O}(t) &= \sigma \left(\mathbf{W}_{ox} \mathbf{x}(t) + \mathbf{W}_{oh} \mathbf{h}(t-1) + \mathbf{b}_{o} \right) \\ \mathbf{h}(t) &= \mathbf{O}(t) \circ \tanh \left(\mathbf{c}(t) \right) \end{split}$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 の < @

LSTM equations

$$I(t) = \sigma (\mathbf{W}_{ix}\mathbf{x}(t) + \mathbf{W}_{ih}\mathbf{h}(t-1) + \mathbf{b}_i)$$

$$F(t) = \sigma (\mathbf{W}_{fx}\mathbf{x}(t) + \mathbf{W}_{fh}\mathbf{h}t - 1) + \mathbf{b}_f)$$

$$O(t) = \sigma (\mathbf{W}_{ox}\mathbf{x}(t) + \mathbf{W}_{oh}\mathbf{h}(t-1) + \mathbf{b}_o)$$

$$g(t) = \mathbf{W}_{hx}\mathbf{x}(t) + \mathbf{W}_{hh}\mathbf{h}(t-1) + \mathbf{b}_h$$

$$c(t) = F(t) \circ c(t-1) + I(t) \circ g(t)$$

$$h(t) = O(t) \circ \tanh(c(t))$$

MLP Lecture 10 Recurrent Neural Networks 2: LSTM, gates, and current research 10

▲ロ → ▲圖 → ▲ 画 → ▲ 画 →

- Goodfellow et al, chapter 10
- C Olah (2015), Understanding LSTMs, http://colah.github.io/posts/2015-08-Understanding-LSTMs/
- A Karpathy et al (2015), Visualizing and Understanding Recurrent Networks, https://arxiv.org/abs/1506.02078

(a)

- 3

More gating units

MLP Lecture 10 Recurrent Neural Networks 2: LSTM, gates, and current research 12

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 の < @

Gating units in highway networks

Deep network module

Gating units in highway networks

Deep network module

Resnet network module

イロン 不得 とくほ とくほう 二日

Gating units in highway networks

Srivastava et al, 2015, Training Very Deep Networks, NIPS-2015, https://arxiv.org/abs/1507.06228

・ロット (四) (日) (日) (日) (日)

Mixture of experts

Finite Mixture Model

MLP Lecture 10 Recurrent Neural Networks 2: LSTM, gates, and current research 14

イロト イポト イヨト イヨト

Mixture of experts

Mixture of Experts

Jacobs et al (1991), Adaptive Mixtures of Local Experts, http://cognet.mit.edu/node/29931

ъ

Example applications using RNNs

Example 1: speech recognition with stacked LSTMs

H Sak et al (2014). "Long Short-Term Memory based Recurrent Neural Network Architectures for Large Scale Acoustic Modelling", *Interspeech*.

Example 2: recurrent encoder-decoder

Decoder

• K Cho et al (2014). "Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation", *EMNLP*.

イロト イポト イヨト イヨト

[•] I Sutskever et al (2014). "Sequence to Sequence Learning with Neural Networks", *NIPS*.

Summary

- Vanishing gradient problem
- LSTMs and gating
- Applications: stacked LSTMs for speech recognition, encoder-decoder for machine translation
- More on recurrent networks next semester in NLU, ASR, MT,)

イロト イポト イヨト イヨト