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Vanishing and exploding gradients

BPTT involves taking the product of many gradients (as in a very deep network)
– this can lead to vanishing (component gradients less than 1) or exploding
(greater than 1) gradients

This can prevent effective training

Modified optimisation algorithms

RMSProp (and similar algorithms) – normalise the gradient for each weight by
average of it magnitude, with a learning rate for each weight
Hessian-free – an approximation to second-order approaches which use curvature
information

Modified hidden unit transfer functions:

Long short term memory (LSTM)

Linear self-recurrence for each hidden unit (long-term memory)
Gates - dynamic weights which are a function of their inputs
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LSTM
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Simple recurrent network unit
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g(t) = Whxx(t) + Whhh(t − 1) + bh

h(t) = tanh (g(t))
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LSTM
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Internal recurrent state (“cell”)
c(t) combines previous state
c(t − 1) and LSTM input g(t)

Gates - weights dependent on the
current input and the previous state

Input gate: controls how much
input to the unit g(t) is written to
the internal state c(t)

Forget gate: controls how much of
the previous internal state c(t − 1)
is written to the internal state c(t)

Input and forget gates together
allow the network to control what
information is stored and
overwritten at each step
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LSTM – Internal recurrent state
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LSTM – Input Gate
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Internal recurrent state (“cell”)
c(t) combines previous state
c(t − 1) and LSTM input g(t)

Gates - weights dependent on the
current input and the previous state

Input gate: controls how much
input to the unit g(t) is written to
the internal state c(t)

Forget gate: controls how much of
the previous internal state c(t − 1)
is written to the internal state c(t)

Input and forget gates together
allow the network to control what
information is stored and
overwritten at each step
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LSTM – Forget Gate
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Internal recurrent state (“cell”)
c(t) combines previous state
c(t − 1) and LSTM input g(t)

Gates - weights dependent on the
current input and the previous state

Input gate: controls how much
input to the unit g(t) is written to
the internal state c(t)

Forget gate: controls how much of
the previous internal state c(t − 1)
is written to the internal state c(t)

Input and forget gates together
allow the network to control what
information is stored and
overwritten at each step
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LSTM – Input and Forget Gates
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I(t) = σ (Wixx(t) + Wihh(t − 1) + bi )

F(t) = σ (Wfxx(t) + Wfhh(t − 1) + bf )

g(t) = Whxx(t) + Whhh(t − 1) + bh

c(t) = F(t) ◦ c(t − 1) + I(t) ◦ g(t)

σ is the sigmoid function

◦ is element-wise vector multiply
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LSTM – Input and Forget Gates
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Output gate: controls how much
of each unit’s activation is output
by the hidden state – it allows the
LSTM cell to keep information that
is not relevant at the current time,
but may be relevant later
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LSTM – Output Gate
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LSTM – Output Gate
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O(t) = σ (Woxx(t) + Wohh(t − 1) + bo)

h(t) = O(t) ◦ tanh (c(t))
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LSTM equations
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LSTM/RNN readings

Goodfellow et al, chapter 10

C Olah (2015), Understanding LSTMs,
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

A Karpathy et al (2015), Visualizing and Understanding Recurrent Networks,
https://arxiv.org/abs/1506.02078
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More gating units
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Gating units in highway networks
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Gating units in highway networks
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Resnet network module
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T(x).F(x)+(1-T(x)).x +
1-T(x)

+

T(x)

Highway network module

Srivastava et al, 2015, Training Very Deep Networks, NIPS-2015,
https://arxiv.org/abs/1507.06228
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Mixture of experts
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Finite Mixture Model
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Mixture of experts

Local
Expert 1

Local
Expert 2

Local
Expert 3

Local
Expert M

….

Input Data

+

p1 p2 p3 pM

Softmax
Gating

Network

Mixture of Experts

Jacobs et al (1991), Adaptive Mixtures of Local Experts, http://cognet.mit.edu/node/29931
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Example applications using RNNs
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Example 1: speech recognition with stacked LSTMs
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Figure 1: LSTMP RNN architecture. A single memory block is
shown for clarity.

memory cell. The output gate controls the output flow of cell
activations into the rest of the network. Later, the forget gate
was added to the memory block [18]. This addressed a weak-
ness of LSTM models preventing them from processing contin-
uous input streams that are not segmented into subsequences.
The forget gate scales the internal state of the cell before adding
it as input to the cell through the self-recurrent connection of
the cell, therefore adaptively forgetting or resetting the cell’s
memory. In addition, the modern LSTM architecture contains
peephole connections from its internal cells to the gates in the
same cell to learn precise timing of the outputs [19].

An LSTM network computes a mapping from an input
sequence x = (x1, ..., xT ) to an output sequence y =
(y1, ..., yT ) by calculating the network unit activations using
the following equations iteratively from t = 1 to T :

it = �(Wixxt + Wimmt�1 + Wicct�1 + bi) (1)
ft = �(Wfxxt + Wfmmt�1 + Wfcct�1 + bf ) (2)

ct = ft � ct�1 + it � g(Wcxxt + Wcmmt�1 + bc) (3)
ot = �(Woxxt + Wommt�1 + Wocct + bo) (4)

mt = ot � h(ct) (5)
yt = �(Wymmt + by) (6)

where the W terms denote weight matrices (e.g. Wix is the ma-
trix of weights from the input gate to the input), Wic, Wfc, Woc

are diagonal weight matrices for peephole connections, the b
terms denote bias vectors (bi is the input gate bias vector), � is
the logistic sigmoid function, and i, f , o and c are respectively
the input gate, forget gate, output gate and cell activation vec-
tors, all of which are the same size as the cell output activation
vector m, � is the element-wise product of the vectors, g and h
are the cell input and cell output activation functions, generally
and in this paper tanh, and � is the network output activation
function, softmax in this paper.

2.2. Deep LSTM

As with DNNs with deeper architectures, deep LSTM RNNs
have been successfully used for speech recognition [11, 17, 2].
Deep LSTM RNNs are built by stacking multiple LSTM lay-
ers. Note that LSTM RNNs are already deep architectures in
the sense that they can be considered as a feed-forward neu-
ral network unrolled in time where each layer shares the same
model parameters. One can see that the inputs to the model
go through multiple non-linear layers as in DNNs, however the
features from a given time instant are only processed by a sin-
gle nonlinear layer before contributing the output for that time
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Figure 2: LSTM RNN architectures.

instant. Therefore, the depth in deep LSTM RNNs has an ad-
ditional meaning. The input to the network at a given time step
goes through multiple LSTM layers in addition to propagation
through time and LSTM layers. It has been argued that deep
layers in RNNs allow the network to learn at different time
scales over the input [20]. Deep LSTM RNNs offer another
benefit over standard LSTM RNNs: They can make better use
of parameters by distributing them over the space through mul-
tiple layers. For instance, rather than increasing the memory
size of a standard model by a factor of 2, one can have 4 lay-
ers with approximately the same number of parameters. This
results in inputs going through more non-linear operations per
time step.

2.3. LSTMP - LSTM with Recurrent Projection Layer

The standard LSTM RNN architecture has an input layer, a re-
current LSTM layer and an output layer. The input layer is con-
nected to the LSTM layer. The recurrent connections in the
LSTM layer are directly from the cell output units to the cell
input units, input gates, output gates and forget gates. The cell
output units are also connected to the output layer of the net-
work. The total number of parameters N in a standard LSTM
network with one cell in each memory block, ignoring the bi-
ases, can be calculated as N = nc ⇥ nc ⇥ 4 + ni ⇥ nc ⇥ 4 +
nc ⇥ no + nc ⇥ 3, where nc is the number of memory cells
(and number of memory blocks in this case), ni is the number
of input units, and no is the number of output units. The com-
putational complexity of learning LSTM models per weight and
time step with the stochastic gradient descent (SGD) optimiza-
tion technique is O(1). Therefore, the learning computational
complexity per time step is O(N). The learning time for a net-
work with a moderate number of inputs is dominated by the
nc ⇥ (4 ⇥ nc + no) factor. For the tasks requiring a large
number of output units and a large number of memory cells to
store temporal contextual information, learning LSTM models
become computationally expensive.

As an alternative to the standard architecture, we proposed
the Long Short-Term Memory Projected (LSTMP) architec-
ture to address the computational complexity of learning LSTM
models [3]. This architecture, shown in Figure 1 has a separate
linear projection layer after the LSTM layer. The recurrent con-
nections now connect from this recurrent projection layer to the
input of the LSTM layer. The network output units are con-
nected to this recurrent layer. The number of parameters in this
model is nc⇥nr⇥4+ni⇥nc⇥4+nr⇥no+nc⇥nr +nc⇥3,

339

H Sak et al (2014). “Long Short-Term Memory based Recurrent Neural Network
Architectures for Large Scale Acoustic Modelling”, Interspeech.
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Example 2: recurrent encoder-decoder

Machine translation

I Sutskever et al (2014). “Sequence to
Sequence Learning with Neural Networks”,
NIPS.

K Cho et al (2014). “Learning Phrase
Representations using RNN Encoder-Decoder
for Statistical Machine Translation”, EMNLP.
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Summary

Vanishing gradient problem

LSTMs and gating

Applications: stacked LSTMs for speech recognition, encoder-decoder for machine
translation

More on recurrent networks next semester in NLU, ASR, MT, ....)
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