Convolutional Networks 2: Training, deep convolutional networks

Steve Renals

Machine Learning Practical — MLP Lecture 8 8 November 2017 / 13 November 2017

MLP Lecture 8 Convolutional Networks 2: Training, deep convolutional networks 1

Recap: Convolutional Network

Simple ConvNet:

- One convolutional layer with max-pooling
- Final fully connected hidden layer (no sharing weight)
- Softmax output layer

イロト イポト イヨト イヨト

Recap: Stacking convolutional layers

- Local receptive fields
- Weight sharing
- Pooling/subsampling

Training Convolutional Networks

Remember: $g_j^{\ell} = \partial E / \partial a_j^{\ell}$, is the error signal for unit *j* in layer ℓ

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Training Convolutional Networks – Pooling Layer

G is a "pseudo-weight matrix" for max-pooling which is set during the forward propagation:

 $G_{ba} = 1$ if feature map unit *b* is contained in maxpool *a* and is the maximum value for the current input. Note that **G** is different for each item in the minibatch.

Training Convolutional Networks – Convolutional Layer Weight Update

To update the shared weights of the convolutional layer, we take account of all units to which a shared weight is connected, by summing over the convolutional units:

$$\frac{\partial E}{\partial w_{k,\ell}^{L-3}} = \sum_{i=0}^{D-1} \sum_{j=0}^{D-1} \frac{\partial E}{\partial a_{i,j}^{L-3}} \frac{\partial a_{i,j}^{L-3}}{\partial w_{k,\ell}^{L-3}}$$

where the kernel has dimension $m \times m$, the feature map has dimension $D \times D$ and $a_{i,j}$ is the activation of the (i, j)th unit in the feature map (see slide 16 in lecture 7):

$$a_{i,j}^{L-3} = \sum_{r=0}^{m-1} \sum_{s=0}^{m-1} w_{r,s}^{L-3} h_{i+r,j+s}^{L-4} + b^{L-3}$$

Recalling that $g_{i,j}^{L-3} = \partial E / \partial a_{i,j}^{L-3}$, then we have:

$$\frac{\partial E}{\partial w_{k,\ell}^{L-3}} = \sum_{i=0}^{D-1} \sum_{j=0}^{D-1} g_{i,j}^{L-3} h_{i+k,j+\ell}^{L-4} = \boldsymbol{g}^{L-3} \otimes \boldsymbol{h}^{L-4}(k,\ell)$$

Training Convolutional Networks - Convolutional Layer

Training the convolutional layer is more complicated

・ロット (雪) (日) (日) (日)

Training Convolutional Networks - Convolutional Layer

Training Convolutional Networks - Convolutional Layer

Forward pass: each hidden unit connected to a region of input units (receptive field)

Forward pass: each hidden unit connected to a region of input units (receptive field)

Forward pass: each hidden unit connected to a region of input units (receptive field)

Forward pass: each hidden unit connected to a region of input units (receptive field)

Backward pass: consider the region of hidden units connected to each input unit.

Backward pass: consider the region of hidden units connected to each input unit.

Backward pass: consider the region of hidden units connected to each input unit.

-

Backward pass: consider the region of hidden units connected to each input unit.

-

Backward pass: consider the region of hidden units connected to each input unit.

-

Backward pass: consider the region of hidden units connected to each input unit.

-

Backward pass: consider the region of hidden units connected to each input unit.

As usual we want to back-propagate the gradients:

$$g_s^{L-4} = \sum_{i \in \text{connected to } s} w_{js} g_j^{L-3} f'(a_s)$$

Look at the shared weights used for back prop:

As usual we want to back-propagate the gradients:

$$g_s^{L-4} = \sum_{i \in \text{connected to } s} w_{js} g_j^{L-3} f'(a_s)$$

Look at the shared weights used for back prop:

As usual we want to back-propagate the gradients:

$$g_s^{L-4} = \sum_{i \in \text{connected to } s} w_{js} g_j^{L-3} f'(a_s)$$

Look at the shared weights used for back prop:

As usual we want to back-propagate the gradients:

$$g_s^{L-4} = \sum_{i \in \text{connected to } s} w_{js} g_j^{L-3} f'(a_s)$$

Look at the shared weights used for back prop:

As usual we want to back-propagate the gradients:

$$g_s^{L-4} = \sum_{i \in \text{connected to } s} w_{js} g_j^{L-3} f'(a_s)$$

Look at the shared weights used for back prop:

As usual we want to back-propagate the gradients:

Look at the shared weights used for back prop:

イロト イポト イヨト イヨト

-

Back prop can then be carried out as a convolution using the weight matrix to scan the padded feature map... BUT the *weight matrix is rotated by 180^{\circ}* (flipped)

Back prop can then be carried out as a convolution using the weight matrix to scan the padded feature map... BUT the *weight matrix is rotated by 180^{\circ}* (flipped)

Back prop can then be carried out as a convolution using the weight matrix to scan the padded feature map... BUT the *weight matrix is rotated by 180^{\circ}* (flipped)

Back prop can then be carried out as a convolution using the weight matrix to scan the padded feature map... BUT the *weight matrix is rotated by 180^{\circ}* (flipped)

Back prop can then be carried out as a convolution using the weight matrix to scan the padded feature map... BUT the *weight matrix is rotated by 180^{\circ}* (flipped)

Convolutional Layer – Back Prop

Back-propagation in a convolutional layer, is also a convolution. But we have to *rotate* the weight matrix \mathbf{W} by 180° (flip the weight matrix), \mathbf{W}^R Using the convolution operator we saw we can write the forward pass as:

$$\mathbf{a}^{L-3} = \mathbf{W}^{L-3} * \mathbf{h}^{L-4} + \mathbf{b}^{L-3}$$
; $\mathbf{h}^{L-3} = f(\mathbf{a}^{L-3})$

And we can write the back-propagation as:

$$\mathbf{g}^{L-4} = \mathbf{W}^{L-3^R} * \mathbf{g}^{L-3} \circ f'(\mathbf{a^{L-4}})$$

• The backward pass flips the weight matrix compared with the forward pass

- If the forward pass is a correlation, the backward pass is a convolution
- If the forward pass is a convolution, the backward pass is a correlation
- (Either is OK)

・ロット (雪) (日) (日) 日

Implementing multilayer networks

A D > A B > A B > A B >

э.

Implementing multilayer networks

Minibatch:

イロト イポト イヨト イヨト

Implementing multilayer networks

Minibatch:

input dimension x minibatch: Represent each layer as a 2-dimension matrix, where each row corresponds to a training example, and the number of minibatch examples is the number of rows

Example at a time, single input image, single feature map:

Example at a time, single input image, multiple feature map:

< 回 > < 回 > < 回

Example at a time, multiple input images, multiple feature map:

Minibatch, multiple input images, multiple feature map:

- Inputs / layer values:
 - Each input image (and convlutional and pooling layer) is 2-dimensions (x,y)
 - If we have multiple feature maps, then that is a third dimension
 - And the minibatch adds a fourth dimension
 - Thus we represent each input (layer values) using a 4-dimension *tensor* (array): (minibatch-size, num-fmaps, x, y)
- Weight matrices (kernels)
 - Each weight matrix used to scan across an image has 2 spatial dimensions (x,y)
 - If there are multiple feature maps to be computed, then that is a third dimension
 - Multiple input feature maps adds a fourth dimension
 - Thus the weight matrices are also represented using a 4-dimension tensor: (num-fmaps-in, num-fmaps-out, x, y)

Both forward and back prop thus involves multiplying 4D tensors. There are various ways to do this:

- Explicitly loop over the dimensions: this results in simpler code, but can be inefficient. Although using cython to compile the loops as C can speed things up
- Serialisation: By replicating input patches and weight matrices, it is possible to convert the required 4D tensor multiplications into a large dot product. Requires careful manipulation of indices!
- Convolutions: use explicit convolution functions for forward and back prop, rotating for the backprop

イロン 不得 とうほう イロン 二日

Deep convolutional networks

- 10

イロト イポト イヨト イヨト

ImageNet Classification ("AlexNet")

Krizhevsky, Sutskever and Hinton, "ImageNet Classification with Deep Convolutional Neural Networks", NIPS-2012.

 ${\tt http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf and the statement of the statement o$

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts at the bottom. The GPUs communicate only at certain layers. The network's input is 150,528-dimensional, and the number of neurons in the network's remaining layers is given by 253,440–186,624–64,896–64,896–43,264–4096–4096–1000.

Model	Top-1	Top-5
Sparse coding [2]	47.1%	28.2%
SIFT + FVs [24]	45.7%	25.7%
CNN	37.5%	17.0%

ImageNet Classification ("VGGNet")

Simonyan and Zisserman, "Very Deep Convolutional Networks for Large-Scale Visual Recognition", ILSVRC-2014. http://www.robots.ox.ac.uk/~vgg/research/very_deep/

Network Design

Key design choices:

- 3x3 conv. kernels very small
- conv. stride 1 no loss of information

Other details:

- Rectification (ReLU) non-linearity
- 5 max-pool layers (x2 reduction)
- no normalisation
- 3 fully-connected (FC) layers

Deep Residual Learning ("ResNets")

He et al, "Deep Residual Learning for Image Recognition", CVPR-2016.

method top-1 err. top-5 err. VGG [41] (ILSVRC'14) 8.43[†] GoogLeNet [44] (ILSVRC'14) 7.89 VGG [41] (v5) 24.4 7.1 PReLU-net [13] 21.59 5.71 BN-inception [16] 21.99 5.81 ResNet-34 B 21.84 5.71 ResNet-34 C 21.53 5.60 ResNet-50 20.745.25 ResNet-101 19.87 4.60 ResNet-152 19.38 4.49

Figure 2. Residual learning: a building block.

20

MLP Lecture 8

Summary

- Convolutional networks include local receptive fields, weight sharing, and pooling leading
- Backprop training can also be implemented as a "reverse" convolutional layer (with the weight matrix rotated)
- Implement using 4D tensors:
 - Inputs / Layer values: minibatch-size, number-fmaps, x, y
 - Weights: number-fmaps-in, number-fmaps-out, x, y
- Reading:

Goodfellow et al, Deep Learning (ch 9)

http://www.deeplearningbook.org/contents/convnets.html

イロン 不得 とくほ とくほ とうほう