
Deep Neural Networks (3)
Regularisation and Normalisation

Steve Renals

Machine Learning Practical — MLP Lecture 5
18 October 2017 / 23 October 2017

MLP Lecture 5 Deep Neural Networks (3) 1

Recap: Early stopping

Validation

Training

E

tt*

MLP Lecture 5 Deep Neural Networks (3) 2

Weight Decay (L2 Regularisation)

Weight decay puts a “spring” on weights

If training data puts a consistent force on a weight, it will outweigh weight decay

If training does not consistently push weight in a direction, then weight decay will
dominate and weight will decay to 0

Without weight decay, weight would walk randomly without being well determined
by the data

Weight decay can allow the data to determine how to reduce the effective number
of parameters

MLP Lecture 5 Deep Neural Networks (3) 3

Penalizing Complexity

Consider adding a complexity term Ew to the network error function, to encourage
smoother mappings:

En = En
train︸ ︷︷ ︸

data term

+ βEW︸ ︷︷ ︸
prior term

Etrain is the usual error function:

En
train = −

K∑

k=1

tnk ln ynk

EW should be a differentiable flexiblity/complexity measure, e.g.

EW = EL2 =
1

2

∑

i

w2
i

∂EL2

∂wi
= wi

MLP Lecture 5 Deep Neural Networks (3) 4

Gradient Descent Training with Weight Decay

∂En

∂wi
=
∂(En

train + EL2)

∂wi
=

(
∂En

train

∂wi
+ β

∂EL2

∂wi

)

=

(
∂En

train

∂wi
+ βwi

)

∆wi = −η
(
∂En

train

∂wi
+ βwi

)

Weight decay corresponds to adding EL2 = 1/2
∑

i w
2
i to the error function

Addition of complexity terms is called regularisation

Weight decay is sometimes called L2 regularisation

MLP Lecture 5 Deep Neural Networks (3) 5

L1 Regularisation

L1 Regularisation corresponds to adding a term based on summing the absolute
values of the weights to the error:

En = En
train︸ ︷︷ ︸

data term

+ βEn
L1︸ ︷︷ ︸

prior term

= En
train + β|wi |

Gradients

∂En

∂wi
=
∂En

train

∂wi
+ β

∂EL1

∂wi

=
∂En

train

∂wi
+ β sgn(wi)

Where sgn(wi) is the sign of wi :
sgn(wi) = 1 if wi > 0 and sgn(wi) = −1 if wi < 0

MLP Lecture 5 Deep Neural Networks (3) 6

L1 vs L2

L1 and L2 regularisation both have the effect of penalising larger weights

In L2 they shrink to 0 at a rate proportional to the size of the weight (βwi)
In L1 they shrink to 0 at a constant rate (β sgn(wi))

Behaviour of L1 and L2 regularisation with large and small weights:

when |wi | is large L2 shrinks faster than L1
when |wi | is small L1 shrinks faster than L2

So L1 tends to shrink some weights to 0, leaving a few large important
connections – L1 encourages sparsity

∂EL1/∂w is undefined when w = 0; assume it is 0 (i.e. take sgn(0) = 0 in the
update equation)

MLP Lecture 5 Deep Neural Networks (3) 7

Data Augmentation – Adding “fake” training data

Generalisation performance goes with the amount of training data (change
MNISTDataProvider to give training sets of 1 000 / 5 000 / 10 000 examples to
see this)

Given a finite training set we could create further training examples...

Create new examples by making small rotations of existing data
Add a small amount of random noise

Using “realistic” distortions to create new data is better than adding random noise

MLP Lecture 5 Deep Neural Networks (3) 8

Model Combination

Combining the predictions of multiple models can reduce overfitting

Model combination works best when the component models are complementary –
no single model works best on all data points

Creating a set of diverse models

Different NN architectures (number of hidden units, number of layers, hidden unit
type, input features, type of regularisation, ...)
Different models (NN, SVM, decision trees, ...)

How to combine models?

Average their outputs
Linearly combine their outputs
Train another “combiner” neural network whose input is the outputs of the
component networks
Architectures designed to create a set of specialised models which can be combined
(e.g. mixtures of experts)

MLP Lecture 5 Deep Neural Networks (3) 9

Dropout

Dropout is a way of training networks to behave so that they have the behaviour
of an average of multiple networks

Dropout training:

Each mini-batch randomly delete a fraction (p ∼ 0.5) of the hidden units (and their
related weights and biases)
Then process the mini-batch (forward and backward) using this modified network,
and update the weights
Restore the deleted units/weights, choose a new random subset of hidden units to
delete and repeat the process

MLP Lecture 5 Deep Neural Networks (3) 10

Dropout Training - Complete Network

Output

Hidden

Input

MLP Lecture 5 Deep Neural Networks (3) 11

Dropout Training - First Minibatch

Output

Hidden

Input

p = 0.5

MLP Lecture 5 Deep Neural Networks (3) 12

Dropout Training - First Minibatch

Output

Hidden

Input

p = 0.5

MLP Lecture 5 Deep Neural Networks (3) 12

Dropout Training - Second Minibatch

Output

Hidden

Input

p = 0.5

MLP Lecture 5 Deep Neural Networks (3) 13

Dropout Training - Second Minibatch

Output

Hidden

Input

p = 0.5

MLP Lecture 5 Deep Neural Networks (3) 13

Dropout

Dropout is a way of training networks to behave so that they have the behaviour
of an average of multiple networks

Dropout training:

Each mini-batch randomly delete a fraction (p ∼ 0.5) of the hidden units (and their
related weights and biases)
Then process the mini-batch (forward and backward) using this modified network,
and update the weights
Restore the deleted units/weights, choose a new random subset of hidden units to
delete and repeat the process

When training is complete the network will have learned a complete set of weights
and biases, all learned when a fraction p of the hidden units are missing. To
compensate for this, in the final network we scale hidden unit activations by
(1− p) (i.e. the probability that a weight is included).

Inverted dropout: scale by 1/(1− p) when training, no scaling in final network.

MLP Lecture 5 Deep Neural Networks (3) 14

Why does Dropout work?

Each mini-batch is like training a different network, since we randomly select to
dropout half the neurons

So we can imagine dropout as combining an exponential number of networks

Since the component networks will be complementary and overfit in different
ways, dropout is implicit model combination

Also interpret dropout as training more robust hidden unit features – each hidden
unit cannot rely on all other hidden unit features being present, must be robust to
missing features

Dropout has been useful in improving the generalisation of large-scale deep
networks

Annealed Dropout: Dropout rate schedule starting with a fraction p units
dropped, decreasing at a constant rate to 0

Initially training with dropout
Eventually fine-tune all weights together

MLP Lecture 5 Deep Neural Networks (3) 15

Data Preprocessing

Normalisation

Subtract the mean of the input data from every feature, and scale by its standard
deviation

x̂ni =
xni −mean(xi)

sd(xi)

PCA - Principal Components Analysis

Decorrelate the data by projecting onto the principal components
Also possible to reduce dimensionality by only projecting onto the top P principal
components

Whitening

Decorrelate by PCA
Scale each dimension

MLP Lecture 5 Deep Neural Networks (3) 16

PCA and Whitening

a)

−1.5 0 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

u2

u1

b)

−1.5 0 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

c)

−1.5 0 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

Figure 3: Illustration of PCA and whitening. a) The original data “cloud”. The
arrows show the principal components. The first one points in the direction of
the largest variance in the data, and the second in the remaining orthogonal
direction. b) When the data is transformed to the principal components, i.e.
the principal components are taken as the new coordinates, the variation in the
data is aligned with those new axes, which is because the principal components
are uncorrelated. c) When the principal components are further normalized to
unit variance, the data cloud has equal variance in all directions, which means
it has been whitened. The change in the lengths of the arrows reflects this
normalization; the larger the variance, the shorter the arrow.

10

from Hyvärinen et al, Natural Image Statistics, Springer, 2009.
MLP Lecture 5 Deep Neural Networks (3) 17

Batch Normalisation

Output

Hidden

Input

h = f(Wx + b)

x

Ioffe & Szegedy, “Batch normalization”, ICML-2015
http://www.jmlr.org/proceedings/papers/v37/ioffe15.html

MLP Lecture 5 Deep Neural Networks (3) 18

http://www.jmlr.org/proceedings/papers/v37/ioffe15.html

Batch Normalisation

Output

Hidden

Input

Batch
Normalisation

zi = batchNorm(wix)

hi = f(zi)

Ioffe & Szegedy, “Batch normalization”, ICML-2015
http://www.jmlr.org/proceedings/papers/v37/ioffe15.html

MLP Lecture 5 Deep Neural Networks (3) 18

http://www.jmlr.org/proceedings/papers/v37/ioffe15.html

Batch Normalisation

Output

Hidden

Input

Batch
Normalisation

zi = batchNorm(wix)

hi = f(zi)

ui = wix

ûi =
ui � µip
�2

i + ✏

zi = �iûi + �i = batchNorm(ui)

Normalise hidden
unit activations ,

then scale and shift

Ioffe & Szegedy, “Batch normalization”, ICML-2015
http://www.jmlr.org/proceedings/papers/v37/ioffe15.html

MLP Lecture 5 Deep Neural Networks (3) 18

http://www.jmlr.org/proceedings/papers/v37/ioffe15.html

Batch Normalisation

Output

Hidden

Input

Batch
Normalisation

zi = batchNorm(wix)

hi = f(zi)

ui = wix

ûi =
ui � µip
�2

i + ✏

zi = �iûi + �i = batchNorm(ui)

µi
1

M

MX

m=1

um
i

�2
i

1

M

MX

m=1

(um
i � µi)

2

Compute mean and
variance of each hidden

unit activation across
the minibatch (size M)

Ioffe & Szegedy, “Batch normalization”, ICML-2015
http://www.jmlr.org/proceedings/papers/v37/ioffe15.html

MLP Lecture 5 Deep Neural Networks (3) 18

http://www.jmlr.org/proceedings/papers/v37/ioffe15.html

Batch normalisation

Use minibatch statistics to normalise activations of each layer (activations are the
argument of the transfer function)
Parameters γ and β can scale and shift the normalised activations; β can also play
the role of bias
batchNorm depends on the current training example – and on examples in the
minibatch (to compute mean and variance)
Training

Set parameters γ and β by gradient descent – require gradients ∂E
∂γ and ∂E

∂β

To back-propagate gradients through the batchNorm layer also require: ∂E
∂û

∂E
∂σ2

∂E
∂µ

∂E
∂ui

Runtime - use the sample mean and variance computed over the complete training
data as the mean and variance parameters for each layer – fixed transform:

ûi =
ui −mean(ui)√

Var(ui) + ε

MLP Lecture 5 Deep Neural Networks (3) 19

Batch normalisation – gradients (for reference)

∂E

∂ûmi
=
∂Em

∂zmi
· γi

∂E

∂σ2
i

=
∑

m

∂Em

∂ûmi
· (umi − µi) ·

−1

2

(
σ2
i + ε

)−3/2

∂E

∂µi
=

(∑

m

∂Em

∂ûmi
· −1√

σ2
i + ε

)
+
∂E

∂σ2
i

· 1

M

∑

m

−2(ui − µi)

∂E

∂umi
=
∂Em

∂ûmi
· 1√

σ2
i + ε

+
∂E

∂σ2
i

· 2(ui − µi)

M
+
∂E

∂µi
· 1

M

∂E

∂γi
=
∑

m

∂Em

∂zmi
· ûmi

∂E

∂βi
=
∑

m

∂Em

∂zmi

see also http://cthorey.github.io/backpropagation/
MLP Lecture 5 Deep Neural Networks (3) 20

http://cthorey.github.io/backpropagation/

Benefits of batch normalisation

Makes training many-layered networks easier

Allows higher learning rates
Weight initialisation less crucial

Can act like a regulariser – maybe reduces need for techniques like dropout

Can be applied to convolutional networks

In practice (image processing) – achieves similar accuracy with many fewer
training cycles

Very widely used, and very useful for many-layered networks (e.g. visual object
recognition)

MLP Lecture 5 Deep Neural Networks (3) 21

Summary

Regularisation

L2 regularisation – weight decay
L1 regularisation – sparsity
Creating additional training data
Model combination
Dropout

Feature normalisation

Batch normalisation

Reading:

Nielsen, chapter 3 of Neural Networks and Deep Learning
http://neuralnetworksanddeeplearning.com/chap3.html

Goodfellow et al, chapter 7 Deep Learning (sections 7.1–7.5, 7.12)
http://www.deeplearningbook.org/contents/regularization.html

MLP Lecture 5 Deep Neural Networks (3) 22

http://neuralnetworksanddeeplearning.com/chap3.html
http://www.deeplearningbook.org/contents/regularization.html

