
Deep Neural Networks (2)
Generalisation, Training algorithms, Initialisation

Steve Renals

Machine Learning Practical — MLP Lecture 4
11 October 2017 / 16 October 2017

MLP Lecture 4 Deep Neural Networks (2) 1

Recap: Training multi-layer networks

Outputs

g
(3)
1 g

(3)
` g

(3)
K

Hidden

Hidden

y1 y` yK

w
(3)
1k

w
(3)
`k

w
(3)
Kk

w
(2)
1j

w
(2)
kj

w
(2)
Hj

h
(2)
Hh

(2)
k

h
(2)
1

g
(2)
1 g

(2)
k

g
(2)
H

h
(1)
j

w
(1)
ji

g
(1)
j

xi
Inputs

g
(2)
k =

 X

m

g(3)
m wmk

!
h

(2)
k (1� h

(2)
k)

@En

@w
(2)
kj

= g
(2)
k h

(1)
j

w
(2)
kj ← w

(2)
kj − η(g

(2)
k h

(1)
j)

MLP Lecture 4 Deep Neural Networks (2) 2

Generalization

How many hidden units (or, how many weights) do we need?

How many hidden layers do we need?

Generalization: what is the expected error on a test set?

Causes of error

Network too “flexible”: Too many weights compared with number of training
examples
Network not flexible enough: Not enough weights (hidden units) to represent the
desired mapping

When comparing models, it can be helpful to compare systems with the same
number of trainable parameters (i.e. the number of trainable weights in a neural
network)

Optimizing training set performance does not necessarily optimize test set
performance....

MLP Lecture 4 Deep Neural Networks (2) 3

Training / Test / Validation Data

Partitioning the data...

Training data – data used for training the network
Validation data – frequently used to measure the error of a network on “unseen”
data (e.g. after each epoch)
Test data – less frequently used “unseen” data, ideally only used once

Frequent use of the same test data can indirectly “tune” the network to that data
(e.g. by influencing choice of hyperparameters such as learning rate, number of
hidden units, number of layers,)

MLP Lecture 4 Deep Neural Networks (2) 4

Measuring generalisation

Generalization Error – The predicted error on unseen data. How can the
generalization error be estimated?

Training error?

Etrain = −
∑

training set

K∑

k=1

tnk ln yn
k

Validation error?

Eval = −
∑

validation set

K∑

k=1

tnk ln yn
k

MLP Lecture 4 Deep Neural Networks (2) 5

Cross-validation

Optimize network performance given a fixed training set

Hold out a set of data (validation set) and predict generalization performance on
this set

1 Train network in usual way on training data
2 Estimate performance of network on validation set

If several networks trained on the same data, choose the one that performs best
on the validation set (not the training set)

n-fold Cross-validation: divide the data into n partitions; select each partition in
turn to be the validation set, and train on the remaining (n − 1) partitions.
Estimate generalization error by averaging over all validation sets.

MLP Lecture 4 Deep Neural Networks (2) 6

Overtraining

Overtraining corresponds to a network function too closely fit to the training set
(too much flexibility)

Undertraining corresponds to a network function not well fit to the training set
(too little flexibility)

Solutions

If possible increasing both network complexity in line with the training set size
Use prior information to constrain the network function
Control the flexibility: Structural Stabilization
Control the effective flexibility: early stopping and regularization

MLP Lecture 4 Deep Neural Networks (2) 7

Structural Stabilization

Directly control the number of weights:

Compare models with different numbers of hidden units

Start with a large network and reduce the number of weights by pruning individual
weights or hidden units

Weight sharing — use prior knowledge to constrain the weights on a set of
connections to be equal.
→ Convolutional Neural Networks

MLP Lecture 4 Deep Neural Networks (2) 8

Early Stopping

Use validation set to decide when to stop training

Training Set Error monotonically decreases as training progresses

Validation Set Error will reach a minimum then start to increase

MLP Lecture 4 Deep Neural Networks (2) 9

Early Stopping

Validation

Training

E

tt*

MLP Lecture 4 Deep Neural Networks (2) 10

Early Stopping

Use validation set to decide when to stop training

Training Set Error monotonically decreases as training progresses

Validation Set Error will reach a minimum then start to increase

Best generalization predicted to be at point of minimum validation set error

“Effective Flexibility” increases as training progresses

Network has an increasing number of “effective degrees of freedom” as training
progresses

Network weights become more tuned to training data

Very effective — used in many practical applications such as speech recognition
and optical character recognition

MLP Lecture 4 Deep Neural Networks (2) 11

Generalisation by design

Regularisation – penalise the weights: L1 (sparsity), L2 (weight decay)

Dropout – randomly delete a fraction of hidden units each minibatch

Data augmentation – generate additional (noisy) training data

Model combination – smooth together multiple networks

Parameter sharing – e.g. convolutional networks

To be covered in future lectures and labs...

MLP Lecture 4 Deep Neural Networks (2) 12

Weight Updates

Let gi (t) = ∂E/∂wi (t) be the gradient of the error function E with respect to a
weight wi at update time t

“Vanilla” gradient descent updates the weight along the negative gradient
direction:

∆wi (t) = −ηgi (t)

wi (t + 1) = wi (t) + ∆wi (t)

Hyperparameter η - learning rate

Initialise η, and update as the training progresses (learning rate schedule)

MLP Lecture 4 Deep Neural Networks (2) 13

Learning Rate Schedules

Proofs of convergence for stochastic optimisation rely on a learning rate that
reduces through time (as 1/t) - Robbins and Munro (1951)

Learning rate schedule – typically initial larger steps followed by smaller steps for
fine tuning: Results in faster convergence and better solutions

Time-dependent schedules

Piecewise constant: pre-determined η for each epoch)
Exponential: η(t) = η(0) exp(−t/r) (r ∼ training set size)
Reciprocal: η(t) = η(0)(1 + t/r)−c (c ∼ 1)

Performance-dependent η – e.g. “NewBOB”: fixed η until validation set stops
improving, then halve η each epoch (i.e. constant, then exponential)

MLP Lecture 4 Deep Neural Networks (2) 14

Training with Momentum

∆wi (t) = −ηgi (t) + α∆wi (t − 1)

α ∼ 0.9 is the momentum

Weight changes start by following the gradient

After a few updates they start to have velocity – no longer pure gradient descent

Momentum term encourages the weight change to go in the previous direction

Damps the random directions of the gradients, to encourage weight changes in a
consistent direction

MLP Lecture 4 Deep Neural Networks (2) 15

Adaptive Learning Rates

Tuning learning rate (and momentum) parameters can be expensive
(hyperparameter grid search) – it works, but we can do better

Adaptive learning rates and per-weight learning rates

AdaGrad – normalise the update for each weight
RMSProp – AdaGrad forces the learning rate to always decrease, this constraint is
relaxed with RMSProp
Adam – “RMSProp with momentum”

Well-explained by Andrej Karpathy at
http://cs231n.github.io/neural-networks-3/

MLP Lecture 4 Deep Neural Networks (2) 16

http://cs231n.github.io/neural-networks-3/

AdaGrad

Separate, normalised update for each weight

Normalised by the sum squared gradient S

Si (0) = 0

Si (t) = Si (t − 1) + gi (t)2

∆wi (t) =
−η√

Si (t) + ε
gi (t)

ε ∼ 10−8 is a small constant to prevent division by 0 errors
The update step for a parameter wi is normalised by the (square root of) the sum
squared gradients for that parameter

Weights with larger gradient magnitudes will have smaller effective learning rates
Si cannot get smaller, so the effective learning rates monotonically decrease

AdaGrad can decrease the effective learning rate too aggressively in deep networks

Duchi et al, http://jmlr.org/papers/v12/duchi11a.html

MLP Lecture 4 Deep Neural Networks (2) 17

http://jmlr.org/papers/v12/duchi11a.html

RMSProp

RProp (http://dx.doi.org/10.1109/ICNN.1993.298623) is a method for
batch gradient descent which uses an adaptive learning rate for each parameter
and only the sign of the gradient (equivalent to normalising by the gradient)

RMSProp is a stochastic gradient descent version of RProp (Hinton, http://
www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf)
normalised by a moving average of the squared gradient – similar to AdaGrad, but
replacing the sum by a moving average for S :

Si (t) = βSi (t − 1) + (1− β)gi (t)2

∆wi (t) =
−η√

Si (t) + ε
gi (t)

β ∼ 0.9 is the decay rate

Effective learning rates no longer guaranteed to decrease

MLP Lecture 4 Deep Neural Networks (2) 18

http://dx.doi.org/10.1109/ICNN.1993.298623
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

Adam

Hinton commented about RMSProp: “Momentum does not help as much as it
normally does”

Adam (Kingma & Ba, https://arxiv.org/abs/1412.6980) can be viewed as
addressing this – it is a variant of RMSProp with momentum:

Mi (t) = αMi (t − 1) + (1− α)gi (t)

Si (t) = βSi (t − 1) + (1− β)gi (t)2

∆wi (t) =
−η√

Si (t) + ε
Mi (t)

Here a momentum-smoothed gradient is used for the update in place of the
gradient. Kingman and Ba recommend α ∼ 0.9, β ∼ 0.999

MLP Lecture 4 Deep Neural Networks (2) 19

https://arxiv.org/abs/1412.6980

Random weight initialisation

Initialise weights to small random numbers r , sampling weights independently
from a Gaussian or from a uniform distribution

control the initialisation by setting the mean (typically to 0) and variance of the
weight distribution

Biases may be initialised to 0

output (softmax) biases can be normalised to log(p(c)), log of prior probability of
the corresponding class c

Calibration – variance of the input to a unit independent of the number of
incoming connections (“fan-in”, nin)

Heuristic: wi ∼ U(−
√

1/nin,
√

1/nin) [U is uniform distribution]

Corresponds to a variance Var(wi) = 1/(3nin)
(Since, if x ∼ U(a, b), then Var(x) = (b − a)2/12
so if x ∼ U(−n, n), then Var(x) = n2/3)

MLP Lecture 4 Deep Neural Networks (2) 20

Why Var(w) ∼ 1/n?

Consider a linear unit:
y =

∑

i

wixi

if w and x are zero-mean, then

Var(y) = Var(
∑

i

wixi) = nVar(xi) Var(wi)

if w and x are iid (independent and identically distributed)

So, if we want variance of inputs and outputs to be the same, set

Var(wi) =
1

n

Nicely explained at http://andyljones.tumblr.com/post/110998971763/
an-explanation-of-xavier-initialization

MLP Lecture 4 Deep Neural Networks (2) 21

http://andyljones.tumblr.com/post/110998971763/an-explanation-of-xavier-initialization
http://andyljones.tumblr.com/post/110998971763/an-explanation-of-xavier-initialization

“GlorotInit” (“Xavier initialisation”)

We would like to constrain the variance of each layer to be 1/nin, thus

wi ∼ U(−
√

3/nin,
√

3/nin)

However we need to take the backprop into account, hence we would also like
Var(wi) = 1/nout

As compromise set the variance to be Var(wi) = 2/(nin + nout)

This corresponds to Glorot and Bengio’s normalised initialisation

wi ∼ U
(
−
√

6/(nin + nout),
√

6/(nin + nout)
)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward
networks”, AISTATS, 2010.
http://www.jmlr.org/proceedings/papers/v9/glorot10a.html

MLP Lecture 4 Deep Neural Networks (2) 22

http://www.jmlr.org/proceedings/papers/v9/glorot10a.html

Summary

Basics of generalisation

Learning rate schedules and gradient descent variants

Initialising the weights

Reading
Goodfellow et al, sections 5.2, 5.3, 8.3, 8.5, 7.8
Andrej Karpathy, CS231n notes (Stanford)
http://cs231n.github.io/neural-networks-3/

Additional Reading
Kingma and Ba, “Adam: A Method for Stochastic Optimization”, ICLR-2015
https://arxiv.org/abs/1412.6980

Glorot and Bengio, “Understanding the difficulty of training deep feedforward
networks”, AISTATS-2010.
http://www.jmlr.org/proceedings/papers/v9/glorot10a.html

MLP Lecture 4 Deep Neural Networks (2) 23

http://cs231n.github.io/neural-networks-3/
https://arxiv.org/abs/1412.6980
http://www.jmlr.org/proceedings/papers/v9/glorot10a.html

