Deep Neural Networks (1)
Hidden layers; Back-propagation

Steve Renals

Machine Learning Practical — MLP Lecture 3
4 October 2017 / 9 October 2017
Recap: Softmax single layer network

MLP Lecture 3
Deep Neural Networks (1)
Single-layer network, 1 output, 2 inputs

$$+$$

$$x_1 \quad x_2$$
Geometric interpretation

Single-layer network, 1 output, 2 inputs

$$y(w; x) = 0$$

$$x_2$$

$$x_1$$

$$w$$

$$b = \frac{-b}{||w||}$$
Single layer network

Single-layer network, 3 outputs, 2 inputs

![Diagram of a single-layer network with 2 inputs and 3 outputs. The inputs x_1 and x_2 are connected to the outputs, illustrating the network's structure.]
Example data (three classes)
Classification regions with single-layer network

Single-layer networks are limited to linear classification boundaries
Single layer network trained on MNIST Digits

Output weights define a “template” for each class
Hinton Diagrams

Visualise the weights for class k

400 (20x20) inputs
Hinton diagram for single layer network trained on MNIST

- Weights for each class act as a “discriminative template”
- Inner product of class weights and input to measure closeness to each template
- Classify to the closest template (maximum value output)
Multi-Layer Networks
From templates to features

- Good classification needs to cope with the variability of real data: scale, skew, rotation, translation,
- Very difficult to do with a single template per class
- Could have multiple templates per task... this will work, but we can do better

Use features rather than templates

(images from: Nielsen, chapter 1)
Incorporating features in neural network architecture

Layered processing: inputs - features - classification

How to obtain features? - learning!
Incorporating features in neural network architecture

![Diagram showing neural network architecture with numbers and symbols]
Multi-layer network

\[y_k = \text{softmax} \left(\sum_{r=1}^{H} w_{kr}^{(2)} h_r^{(1)} + b_k \right) \]

\[h_j^{(1)} = \text{sigmoid} \left(\sum_{s=1}^{d} w_{js}^{(1)} x_s + b_j \right) \]
Multi-layer network for MNIST

Hidden units make training the weights more complicated, since the hidden units affect the error function indirectly via all the outputs.

The credit assignment problem:
- What is the “error” of a hidden unit?
- How important is input-hidden weight $w_{ji}^{(1)}$ to output unit k?
- What is the gradient of the error with respect to each weight?

Solution: back-propagation of error (backprop)

Backprop enables the gradients to be computed. These gradients are used by gradient descent to train the weights.
Training output weights

Outputs

Hidden units

\[y_1 \]

\[y_t \]

\[y_K \]

\[g_1^{(2)} \]

\[g_t^{(2)} \]

\[g_K^{(2)} \]

\[w_{1j}^{(2)} \]

\[w_{tj}^{(2)} \]

\[w_{Kj}^{(2)} \]

\[\frac{\partial E^n}{\partial w_{Kj}^{(2)}} = g_k^{(2)} h_j^{(1)} \]

\[h_j \]

\[w_{ji}^{(1)} \]

\[x_i \]

MLP Lecture 3

Deep Neural Networks (1)
Training MLPs: Error function and required gradients

- **Cross-entropy error function:**

\[
E^n = - \sum_{k=1}^{C} t^n_k \ln y^n_k
\]

- **Required gradients:**

\[
\frac{\partial E^n}{\partial w_{kj}^{(2)}}, \quad \frac{\partial E^n}{\partial w_{ji}^{(1)}}, \quad \frac{\partial E^n}{\partial b_k^{(2)}}, \quad \frac{\partial E^n}{\partial b_j^{(1)}}
\]

- **Gradient for hidden-to-output weights** similar to single-layer network:

\[
\frac{\partial E^n}{\partial w_{kj}^{(2)}} = \frac{\partial E^n}{\partial a_k^{(2)}} \cdot \frac{\partial a_k^{(2)}}{\partial w_{kj}} = \left(\sum_{c=1}^{C} \frac{\partial E^n}{\partial y_c} \cdot \frac{\partial y_c}{\partial a_k^{(2)}} \right) \cdot \frac{\partial a_k^{(2)}}{\partial w_{kj}}
\]

\[
= (y_k - t_k) h_j^{(1)} g_k^{(2)}
\]
Back-propagation of error: hidden unit error signal

$$g_j^{(1)} = \left(\sum_{\ell} g_{\ell j}^{(2)} w_{\ell j} \right) h_j (1 - h_j)$$

$$\frac{\partial E^n}{\partial w_{ji}^{(1)}} = g_j^{(1)} x_i$$
Training MLPs: Input-to-hidden weights

\[
\frac{\partial E^n}{\partial w_{ji}^{(1)}} = \frac{\partial E^n}{\partial a_j^{(1)}} \cdot \frac{\partial a_j^{(1)}}{\partial w_{ji}^{(1)}}
\]

To compute \(g_j^{(1)} = \frac{\partial E^n}{\partial a_j^{(1)}} \), the error signal for hidden unit \(j \), we must sum over all the output units’ contributions to \(g_j^{(1)} \):

\[
g_j^{(1)} = \sum_{c=1}^{K} \frac{\partial E^n}{\partial a_c^{(2)}} \cdot \frac{\partial a_c^{(2)}}{\partial a_j^{(1)}} = \left(\sum_{c=1}^{K} g_c^{(2)} \cdot \frac{\partial a_c^{(2)}}{\partial h_j^{(1)}} \right) \cdot \frac{\partial h_j^{(1)}}{\partial a_j^{(1)}}
\]

\[
= \left(\sum_{c=1}^{K} g_c^{(2)} w_c^{(2)} \right) h_j^{(1)} (1 - h_j^{(1)})
\]
Training MLPs: Gradients

\[
\frac{\partial E^n}{\partial w_{kj}^{(2)}} = (y_k - t_k) \cdot h_j^{(1)}
\]

\[
\frac{\partial E^n}{\partial w_{ji}^{(1)}} = \left(\sum_{c=1}^{k} g_c^{(2)} w_{cj}^{(2)} \right) h_j^{(1)} (1 - h_j^{(1)}) \cdot x_i
\]

- Exercise: write down expressions for the gradients w.r.t. the biases

\[
\frac{\partial E^n}{\partial b_k^{(2)}} \quad \frac{\partial E^n}{\partial b_j^{(1)}}
\]
Back-propagation of error: hidden unit error signal

\[g_j^{(1)} = \left(\sum_{\ell} g_{\ell j}^{(2)} w_{\ell j} \right) h_j (1 - h_j) \]

\[\frac{\partial E_n}{\partial w_{ji}^{(1)}} = g_j^{(1)} x_i \]
Back-propagation of error

- The back-propagation of error algorithm is summarised as follows:
 1. Apply an input vectors from the training set, \(x \), to the network and forward propagate to obtain the output vector \(y \)
 2. Using the target vector \(t \) compute the error \(E^n \)
 3. Evaluate the error gradients \(g_k^{(2)} \) for each output unit
 4. Evaluate the error gradients \(g_j^{(1)} \) for each hidden unit using back-propagation of error
 5. Evaluate the derivatives for each training pattern

- Back-propagation can be extended to multiple hidden layers, in each case computing the \(g^{(\ell)} \)s for the current layer as a weighted sum of the \(g^{(\ell+1)} \)s of the next layer
Training with multiple hidden layers

\[
g^{(2)}_k = \left(\sum_m g^{(3)}_m w_{mk} \right) h^{(2)}_k (1 - h^{(2)}_k)
\]

\[
\frac{\partial E^n}{\partial w^{(2)}_{kj}} = g^{(2)}_j h^{(2)}_j
\]
Are there alternatives to Sigmoid Hidden Units?
Sigmoid function

Logistic sigmoid activation function $g(a) = \frac{1}{1 + \exp(-a)}$
Sigmoid Hidden Units

- Compress unbounded inputs to (0,1), saturating high magnitudes to 1
- Interpretable as the probability of a feature defined by their weight vector
- Interpretable as the (normalised) firing rate of a neuron

However...

- Saturation causes gradients to approach 0: If the output of a sigmoid unit is \(h \), then the gradient is \(h(1 - h) \) which approaches 0 as \(h \) saturates to 0 or 1 - and hence the gradients it multiplies into approach 0. Very small gradients result in very small parameter changes, so learning becomes very slow.
- Outputs are not centred at 0: The output of a sigmoid layer will have mean > 0. This is numerically undesirable.
tanh

tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}

sigmoid(x) = \frac{1 + \tanh(x/2)}{2}

Derivative:
\frac{d}{dx} \tanh(x) = 1 - \tanh^2(x)
tanh hidden units

- tanh has same shape as sigmoid but has output range ± 1
- Results about approximation capability of sigmoid networks also apply to tanh networks
- Possible reason to prefer tanh over sigmoid: allowing units to be positive or negative allows gradient for weights into a hidden unit to have a different sign
- Saturation still a problem
Rectified Linear Unit – ReLU

relu(x) = max(0, x)

Derivative: \[
\frac{d}{dx} \text{relu}(x) = \begin{cases}
0 & \text{if } x \leq 0 \\
1 & \text{if } x > 0
\end{cases}
\]
ReLU hidden units

- Similar approximation results to tanh and sigmoid hidden units
- Empirical results for speech and vision show consistent improvements using relu over sigmoid or tanh
- Unlike tanh or sigmoid there is no positive saturation – saturation results in very small derivatives (and hence slower learning)
- Negative input to relu results in zero gradient (and hence no learning)
- Relu is computationally efficient: \(\max(0, x) \)
- Relu units can “die” (i.e. respond with 0 to everything)
- Relu units can be very sensitive to the learning rate
Summary

- Understanding what single-layer networks compute
- How multi-layer networks allow feature computation
- Training multi-layer networks using back-propagation of error
- Tanh and ReLU activation functions
- Multi-layer networks are also referred to as *deep neural networks* or *multi-layer perceptrons*

Reading:
- Nielsen, chapter 2
- Goodfellow, sections 6.3, 6.4, 6.5
- Bishop, sections 3.1, 3.2, and chapter 4