
Normalisation and Initialisation

Steve Renals

Machine Learning Practical — MLP Lecture 6
26 October 2016

MLP Lecture 6 Normalisation and Initialisation 1

Feature Normalisation

MLP Lecture 6 Normalisation and Initialisation 2

Data Preprocessing

Normalisation

Subtract the mean of the input data from every feature, and
scale by its standard deviation

x̂ni =
xni − mean(xi)

sd(xi)

PCA - Principal Components Analysis

Decorrelate the data by projecting onto the principal
components
Also possible to reduce dimensionality by only projecting onto
the top P principal components

Whitening

Decorrelate by PCA
Scale each dimension

MLP Lecture 6 Normalisation and Initialisation 3

PCA and Whitening

a)

−1.5 0 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

u2

u1

b)

−1.5 0 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

c)

−1.5 0 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

Figure 3: Illustration of PCA and whitening. a) The original data “cloud”. The
arrows show the principal components. The first one points in the direction of
the largest variance in the data, and the second in the remaining orthogonal
direction. b) When the data is transformed to the principal components, i.e.
the principal components are taken as the new coordinates, the variation in the
data is aligned with those new axes, which is because the principal components
are uncorrelated. c) When the principal components are further normalized to
unit variance, the data cloud has equal variance in all directions, which means
it has been whitened. The change in the lengths of the arrows reflects this
normalization; the larger the variance, the shorter the arrow.

10

from Hyvärinen et al, Natural Image Statistics, Springer, 2009.

MLP Lecture 6 Normalisation and Initialisation 4

How should we initialise
deep networks?

MLP Lecture 6 Normalisation and Initialisation 5

Random weight initialisation

Initialise weights to small random numbers r , sampling weights
independently from a Gaussian or from a uniform distribution

control the initialisation by setting the mean (typically to 0)
and variance of the weight distribution

Biases may be initialised to 0

output (softmax) biases can be normalised to log(p(c)), log of
prior probability of the corresponding class c

Calibration – variance of the input to a unit independent of
the number of incoming connections (“fan-in”, nin)

Heuristic: wi ∼ U(−
√

1/nin,
√

1/nin) [U is uniform
distribution]

Corresponds to a variance Var(wi) = 1/(3nin)
(Since, if x ∼ U(a, b), then Var(x) = (b − a)2/12
so if x ∼ U(−n, n), then Var(x) = n2/3)

MLP Lecture 6 Normalisation and Initialisation 6

“GlorotInit” (“Xavier initialisation”)

We would like to constrain the variance of each layer to be
1/nin, thus

wi ∼ U(−
√

3/nin,
√

3/nin)

However we need to take the backprop into account, hence we
would also like Var(wi) = 1/nout

As compromise set the variance to be Var(wi) = 2/(nin +nout)

This corresponds to Glorot and Bengio’s normalised
initialisation

wi ∼ U
(
−
√

6/(nin + nout),
√

6/(nin + nout)
)

Glorot and Bengio, “Understanding the difficulty of training
deep feedforward networks”, AISTATS, 2010.
http://www.jmlr.org/proceedings/papers/v9/glorot10a.html

MLP Lecture 6 Normalisation and Initialisation 7

http://www.jmlr.org/proceedings/papers/v9/glorot10a.html

Batch Normalisation

Output

Hidden

Input

h = f(Wx + b)

x

Ioffe & Szegedy, “Batch normalization”, ICML-2015
http://www.jmlr.org/proceedings/papers/v37/ioffe15.html

MLP Lecture 6 Normalisation and Initialisation 8

http://www.jmlr.org/proceedings/papers/v37/ioffe15.html

Batch Normalisation

Output

Hidden

Input

Batch
Normalisation

zi = batchNorm(wix)

hi = f(zi)

Ioffe & Szegedy, “Batch normalization”, ICML-2015
http://www.jmlr.org/proceedings/papers/v37/ioffe15.html

MLP Lecture 6 Normalisation and Initialisation 8

http://www.jmlr.org/proceedings/papers/v37/ioffe15.html

Batch Normalisation

Output

Hidden

Input

Batch
Normalisation

zi = batchNorm(wix)

hi = f(zi)

ui = wix

ûi =
ui � µip
�2

i + ✏

zi = �iûi + �i = batchNorm(ui)

Normalise hidden
unit activations ,

then scale and shift

Ioffe & Szegedy, “Batch normalization”, ICML-2015
http://www.jmlr.org/proceedings/papers/v37/ioffe15.html

MLP Lecture 6 Normalisation and Initialisation 8

http://www.jmlr.org/proceedings/papers/v37/ioffe15.html

Batch Normalisation

Output

Hidden

Input

Batch
Normalisation

zi = batchNorm(wix)

hi = f(zi)

ui = wix

ûi =
ui � µip
�2

i + ✏

zi = �iûi + �i = batchNorm(ui)

µi
1

M

MX

m=1

um
i

�2
i

1

M

MX

m=1

(um
i � µi)

2

Compute mean and variance
of each hidden unit activation
across the minibatch (size M)

Ioffe & Szegedy, “Batch normalization”, ICML-2015
http://www.jmlr.org/proceedings/papers/v37/ioffe15.html

MLP Lecture 6 Normalisation and Initialisation 8

http://www.jmlr.org/proceedings/papers/v37/ioffe15.html

Batch normalisation

Use minibatch statistics to normalise activations of each layer
(activations are the argument of the transfer function)
Parameters γ and β can scale and shift the normalised
activations; β can also play the role of bias
batchNorm depends on the current training example – and on
examples in the minibatch (to compute mean and variance)
Training

Set parameters γ and β by gradient descent – require
gradients ∂E

∂γ and ∂E
∂β

To back-propagate gradients through the batchNorm layer also
require: ∂E

∂û
∂E
∂σ2

∂E
∂µ

∂E
∂ui

Runtime - use the sample mean and variance computed over
the complete training data as the mean and variance
parameters for each layer – fixed transform:

ûi =
ui − mean(ui)√

Var(ui) + ε

MLP Lecture 6 Normalisation and Initialisation 9

Batch normalisation – gradients (for reference)

∂E

∂ûmi
=
∂Em

∂zmi
· γi

∂E

∂σ2
i

=
∑

m

∂Em

∂ûmi
· (umi − µi) ·

−1

2

(
σ2
i + ε

)−3/2

∂E

∂µi
=

(∑

m

∂Em

∂ûmi
· −1√

σ2
i + ε

)
+
∂E

∂σ2
i

· 1

M

∑

m

−2(ui − µi)

∂E

∂umi
=
∂Em

∂ûmi
· 1√

σ2
i + ε

+
∂E

∂σ2
i

· 2(ui − µi)

M
+
∂E

∂µi
· 1

M

∂E

∂γi
=
∑

m

∂Em

∂zmi
· ûmi

∂E

∂βi
=
∑

m

∂Em

∂zmi

see also http://cthorey.github.io/backpropagation/

MLP Lecture 6 Normalisation and Initialisation 10

http://cthorey.github.io/backpropagation/

Benefits of batch normalisation

Makes training many-layered networks easier

Allows higher learning rates
Weight initialisation less crucial

Can act like a regulariser – maybe reduces need for techniques
like dropout

Can be applied to convolutional networks

In practice (image processing) – achieves similar accuracy
with many fewer training cycles

Very widely used, and very useful for many-layered networks
(e.g. visual object recognition)

MLP Lecture 6 Normalisation and Initialisation 11

Pretraining

MLP Lecture 6 Normalisation and Initialisation 12

Pretraining

Why is training deep networks hard?
Vanishing (or exploding) gradients – gradients for layers closer
to the input layer are computed multiplicatively using backprop
If sigmoid/tanh hidden units near the output saturate then
back-propagated gradients will be very small
Good discussion in chapter 5 of Neural Networks and Deep
Learning

Solve by stacked pretraining
Train the first hidden layer
Add a new hidden layer, and train only the parameters relating
to the new hidden layer. Repeat.
The use the pretrained weights to initialise the network –
emphfine-tune the complete network using gradient descent

Approaches to pre-training
Supervised: Layer-by-layer cross-entropy training
Unsupervised: Autoencoders
Unsupervised: Restricted Boltzmann machines (not covered in
this course)

MLP Lecture 6 Normalisation and Initialisation 13

Pretraining

Why is training deep networks hard?
Vanishing (or exploding) gradients – gradients for layers closer
to the input layer are computed multiplicatively using backprop
If sigmoid/tanh hidden units near the output saturate then
back-propagated gradients will be very small
Good discussion in chapter 5 of Neural Networks and Deep
Learning

Solve by stacked pretraining
Train the first hidden layer
Add a new hidden layer, and train only the parameters relating
to the new hidden layer. Repeat.
The use the pretrained weights to initialise the network –
emphfine-tune the complete network using gradient descent

Approaches to pre-training
Supervised: Layer-by-layer cross-entropy training
Unsupervised: Autoencoders
Unsupervised: Restricted Boltzmann machines (not covered in
this course)

MLP Lecture 6 Normalisation and Initialisation 13

Pretraining

Why is training deep networks hard?
Vanishing (or exploding) gradients – gradients for layers closer
to the input layer are computed multiplicatively using backprop
If sigmoid/tanh hidden units near the output saturate then
back-propagated gradients will be very small
Good discussion in chapter 5 of Neural Networks and Deep
Learning

Solve by stacked pretraining
Train the first hidden layer
Add a new hidden layer, and train only the parameters relating
to the new hidden layer. Repeat.
The use the pretrained weights to initialise the network –
emphfine-tune the complete network using gradient descent

Approaches to pre-training
Supervised: Layer-by-layer cross-entropy training
Unsupervised: Autoencoders
Unsupervised: Restricted Boltzmann machines (not covered in
this course)

MLP Lecture 6 Normalisation and Initialisation 13

Greedy Layer-by-layer cross-entropy training

1 Train a network with one hidden layer

2 Remove the output layer and weights leading to the output
layer

3 Add an additional hidden layer and train only the newly added
weights

4 Goto 2 or finetune & stop if deep enough

MLP Lecture 6 Normalisation and Initialisation 14

Greedy Layer-by-layer cross-entropy training

1 Train a network with one hidden layer
2 Remove the output layer and weights leading to the output

layer
3 Add an additional hidden layer and train only the newly added

weights
4 Goto 2 or finetune & stop if deep enough

….

….

….

MLP Lecture 6 Normalisation and Initialisation 14

Greedy Layer-by-layer cross-entropy training

1 Train a network with one hidden layer
2 Remove the output layer and weights leading to the output

layer
3 Add an additional hidden layer and train only the newly added

weights
4 Goto 2 or finetune & stop if deep enough

….

….

….

MLP Lecture 6 Normalisation and Initialisation 14

Greedy Layer-by-layer cross-entropy training

1 Train a network with one hidden layer
2 Remove the output layer and weights leading to the output

layer
3 Add an additional hidden layer and train only the newly added

weights
4 Goto 2 or finetune & stop if deep enough

….

….

….

….

….

….

MLP Lecture 6 Normalisation and Initialisation 14

Greedy Layer-by-layer cross-entropy training

1 Train a network with one hidden layer
2 Remove the output layer and weights leading to the output

layer
3 Add an additional hidden layer and train only the newly added

weights
4 Goto 2 or finetune & stop if deep enough

….

….

….

….

….

….

….

….

….

…. ….

….

MLP Lecture 6 Normalisation and Initialisation 14

Greedy Layer-by-layer cross-entropy training

1 Train a network with one hidden layer
2 Remove the output layer and weights leading to the output

layer
3 Add an additional hidden layer and train only the newly added

weights
4 Goto 2 or finetune & stop if deep enough

….

….

….

….

….

….

….

….

….

…. ….

….

MLP Lecture 6 Normalisation and Initialisation 14

Autoencoders

An autoencoder is a neural network trained to map its input
into a distributed representation from which the input can be
reconstructed

Example: single hidden layer network, with an output the
same dimension as the input, trained to reproduce the input
using squared error cost function

….

….

….
y: d dimension outputs

x: d dimension inputs

learned representation

E = �1

2
||y � x||2

MLP Lecture 6 Normalisation and Initialisation 15

Stacked autoencoders

Can the hidden layer just copy the input (if it has an equal or
higher dimension)?

In practice experiments show that nonlinear autoencoders
trained with stochastic gradient descent result in useful hidden
representations
Early stopping acts as a regulariser

Stacked autoencoders – train a sequence of autoencoders,
layer-by-layer

First train a single hidden layer autoencoder
Then use the learned hidden layer as the input to a new
autoencoder

MLP Lecture 6 Normalisation and Initialisation 16

Stacked autoencoders

Can the hidden layer just copy the input (if it has an equal or
higher dimension)?

In practice experiments show that nonlinear autoencoders
trained with stochastic gradient descent result in useful hidden
representations
Early stopping acts as a regulariser

Stacked autoencoders – train a sequence of autoencoders,
layer-by-layer

First train a single hidden layer autoencoder
Then use the learned hidden layer as the input to a new
autoencoder

MLP Lecture 6 Normalisation and Initialisation 16

Stacked Autoencoders

….

….

….

….

….

…. ….

….

….

Input

Hidden 1

Hidden 2

Hidden 3

MLP Lecture 6 Normalisation and Initialisation 17

Pretraining using Stacked autoencoder

….

….

….

….

Input

Hidden 1

Hidden 2

Hidden 3

Initialise hidden layers

MLP Lecture 6 Normalisation and Initialisation 18

Pretraining using Stacked autoencoder

….

….

….

….

Input

Hidden 1

Hidden 2

Hidden 3

…. Output

Train output layer

MLP Lecture 6 Normalisation and Initialisation 18

Pretraining using Stacked autoencoder

….

….

….

….

Input

Hidden 1

Hidden 2

Hidden 3

…. Output

Fine tune whole network

MLP Lecture 6 Normalisation and Initialisation 18

Denoising Autoencoders

Basic idea: Map from a corrupted version of the input to a
clean version (at the output)

Forces the learned representation to be stable and robust to
noise and variations in the input

To perform the denoising task well requires a representation
which models the important structure in the input

The aim is to learn a representation that is robust to noise,
not to perform the denoising mapping as well as possible
Noise in the input:

Random Gaussian noise added to each input vector
Masking – randomly setting some components of the input
vector to 0
“Salt & Pepper” – randomly setting some components of the
input vector to 0 and others to 1

Stacked denoising autoencoders – noise is only applied to the
input vectors, not to the learned representations

MLP Lecture 6 Normalisation and Initialisation 19

Denoising Autoencoder

….

….

….
y: d dimension outputs

x: d dimension inputs
(clean)

learned representation

E = �1

2
||y � x||2

x’: d dimension inputs
(noisy)

….

MLP Lecture 6 Normalisation and Initialisation 20

Summary

Feature normalisation
Random parameter initialisation
Batch normalisation
Layer-by-layer Pretraining and Autoencoders

For many tasks (e.g. MNIST) pre-training seems to be
necessary / useful for training deep networks
For some tasks with very large sets of training data (e.g.
speech recognition) pre-training may not be necessary
(Can also pre-train using stacked restricted Boltzmann
machines)

Reading: Michael Nielsen, chapter 5 of Neural Networks and
Deep Learning
http://neuralnetworksanddeeplearning.com/chap5.html

Pascal Vincent et al, “Stacked Denoising Autoencoders:
Learning Useful Representations in a Deep Network with a
Local Denoising Criterion”, JMLR, 11:3371–3408, 2010.
http://www.jmlr.org/papers/volume11/vincent10a/

vincent10a.pdf MLP Lecture 6 Normalisation and Initialisation 21

http://neuralnetworksanddeeplearning.com/chap5.html
http://www.jmlr.org/papers/volume11/vincent10a/vincent10a.pdf
http://www.jmlr.org/papers/volume11/vincent10a/vincent10a.pdf

