Regularisation and Hidden Unit Transfer Functions

Steve Renals

Machine Learning Practical — MLP Lecture 5
19 October 2016

MLP Lecture 5 1

Recap: Overtraining

@ Overtraining corresponds to a network function too closely fit
to the training set (too much flexibility)

@ Undertraining corresponds to a network function not well fit
to the training set (too little flexibility)
@ Solutions
o If possible increasing both network complexity in line with the
training set size
e Use prior information to constrain the network function
o Control the flexibility: Structural Stabilisation
o Control the effective flexibility: early stopping and
regularisation

MLP Lecture 5 2

Regularisation

LP Lecture 5 Regularisation and Hi Unit Transfer Functions

Weight Decay (L2 Regularisation)

o Weight decay puts a “spring” on weights

o If training data puts a consistent force on a weight, it will
outweigh weight decay

@ If training does not consistently push weight in a direction,
then weight decay will dominate and weight will decay to 0

@ Without weight decay, weight would walk randomly without
being well determined by the data

o Weight decay can allow the data to determine how to reduce
the effective number of parameters

MLP Lecture 5 4

Penalizing Complexity

o Consider adding a complexity term E,, to the network error
function, to encourage smoother mappings:

E"= t,:ain + ﬂEW

data term prior term

MLP Lecture 5 5

Penalizing Complexity

o Consider adding a complexity term E,, to the network error

function, to encourage smoother mappings:
E" = Et,:am + BEw
~—~— ——

data term prior term

@ Eirain is the usual error function:

K
(Ean] = =" ey
k=1

MLP Lecture 5 5

Penalizing Complexity

o Consider adding a complexity term E,, to the network error
function, to encourage smoother mappings:

n __ n
E" = Etram + BEW
~—— ——

data term prior term

@ Eirain is the usual error function:

(Ean) = - Ztum

@ Eyy should be a differentiable erX|bI|ty/compIexity measure,

e.g.
(Ev=Fa)- 15w
i

OEp>
aW,' = Wi

MLP Lecture 5 5

Gradient Descent Training with Weight Decay

OE" _ a(Et,;ain + EL2) _ <8Et,;ain +58EL2>

ow; | ow; ow; ow;
_ aEt’;ain X
a < ow; +BW’)
AW,' =7 <8Etrain + /BW,'>
ow;

o Weight decay corresponds to adding E;» = 1/23", w? to the
error function

@ Addition of complexity terms is called regularisation
@ Weight decay is sometimes called L2 regularisation

MLP Lecture 5 6

L1 Regularisation

o L1 Regularisation corresponds to adding a term based on
summing the absolute values of the weights to the error:

n __ n n
E" = Etraln + /BELl
~—~— ——~

data term prior term

= Etrllam + ﬁ|W,'|

o Gradients

aEn — 6Et’|7'a|n +5

OEp1
ow; ow; ow;
a n

8:‘;2”‘ + 6Sgn(wl)

Where sgn(w;) is the sign of w;:
sgn(w;) =1if w; >0 and sgn(w;) = —1if w; <0

MLP Lecture 5 7

L1 vs L2

@ L1 and L2 regularisation both have the effect of penalising
larger weights
e In L2 they shrink to 0 at a rate proportional to the size of the
weight (Bw;)
o In L1 they shrink to 0 at a constant rate (3 sgn(w;))
@ Behaviour of L1 and L2 regularisation with large and small
weights:
o when |w;| is large L2 shrinks faster than L1
o when |w;| is small L1 shrinks faster than L2
@ So L1 tends to shrink some weights to 0, leaving a few large
important connections — L1 encourages sparsity

@ 0E;1/0w is undefined when w = 0; assume it is O (i.e. take
sgn(0) = 0 in the update equation)

MLP Lecture 5 8

Data Augmentation — Adding “fake” training data

@ Generalisation performance goes with the amount of training
data (change MNISTDataProvider to give training sets of
1000 / 5000 / 10000 examples to see this)

@ Given a finite training set we could create further training
examples...

o Create new examples by making small rotations of existing data
e Add a small amount of random noise

@ Using “realistic” distortions to create new data is better than

adding random noise

MLP Lecture 5 9

Model Combination

@ Combining the predictions of multiple models can reduce
overfitting

@ Model combination works best when the component models
are complementary — no single model works best on all data
points

@ Creating a set of diverse models

o Different NN architectures (number of hidden units, number of
layers, hidden unit type, input features, type of regularisation,

o Different models (NN, SVM, decision trees, ...)
@ How to combine models?

o Average their outputs

o Linearly combine their outputs

e Train another “combiner” neural network whose input is the
outputs of the component networks

e Architectures designed to create a set of specialised models
which can be combined (e.g. mixtures of experts)

MLP Lecture 5 10

Dropout

LP Lecture 5 Regularisation and Hi Unit Transfer Functions

o Dropout is a way of training networks to behave so that they
have the behaviour of an average of multiple networks

@ Dropout training:
e Each mini-batch randomly delete a fraction (p ~ 0.5) of the
hidden units (and their related weights and biases)
o Then process the mini-batch (forward and backward) using
this modified network, and update the weights
o Restore the deleted units/weights, choose a new random
subset of hidden units to delete and repeat the process

MLP Lecture 5 12

X
—
(@)
=
s}
[0}
=
(D)
=
Q2
o
£
(@)
@)
1
o0
=
=
T
—
_I
+—
=
(@)
o
(@)
—
()

)

MLP Lecture

<=
O
+—
T
=
=
=
=
n
=
LL
1
o0
=
=
T
—
_I
+—
=
(@)
o
(@)
—
()

p=205

14

)

MLP Lecture

Dropout Training - First Minibatch

Hidden

MLP Lecture 5 14

d=
O
-
T
=
=
=
o
c
o
O
b}
V)]
1
)
=
=
T
| -
_I
i)
=
o
Q
o
S
o

p=20.5

)

MLP Lecture

d=
O
-
T
=
=
=
o
c
o
O
b}
V)]
1
)
=
=
T
| -
_I
i)
=
o
Q
o
S
o

o Dropout is a way of training networks to behave so that they
have the behaviour of an average of multiple networks
@ Dropout training:
e Each mini-batch randomly delete a fraction (p ~ 0.5) of the
hidden units (and their related weights and biases)
o Then process the mini-batch (forward and backward) using
this modified network, and update the weights
o Restore the deleted units/weights, choose a new random
subset of hidden units to delete and repeat the process
@ When training is complete the network will have learned a
complete set of weights and biases, all learned when a fraction
p of the hidden units are missing. To compensate for this, in
the final network we scale hidden unit activations by p.

@ Inverted dropout: scale by 1/p when training, no scaling in
final network.

MLP Lecture 5 16

Why does Dropout work?

@ Each mini-batch is like training a different network, since we
randomly select to dropout half the neurons

@ So we can imagine dropout as combining an exponential
number of networks

@ Since the component networks will be complementary and
overfit in different ways, dropout is implicit model combination

@ Also interpret dropout as training more robust hidden unit
features — each hidden unit cannot rely on all other hidden
unit features being present, must be robust to missing features

@ Dropout has been useful in improving the generalisation of
large-scale deep networks

o Annealed Dropout: Dropout rate schedule starting with a
fraction p units dropped, decreasing at a constant rate to 0
o Initially training with dropout
e Eventually fine-tune all weights together

MLP Lecture 5 17

Are there alternatives
to Sigmoid Hidden Units?

MLP Lecture 5 Regularisation and Hidden Unit Transfer Functions 18

Recap: Architectures of multi-layer networks

Y Yo, YK

5 = <Z 553>w,,m) A2 - n?)
OE" s,
(2) — Tk

kj

ow,
@ npues Q

MLP Lecture 5 19

Sigmoid function

Logistic sigmoid activation function g(a) = 1/(1+exp(-a))
1 T T T T T T T T

0.9r 7

0.8 7

0.21 b

0.1 b

MLP Lecture 5 20

Sigmoid Hidden Units

@ In their favour

o Compress unbounded inputs to (0,1), saturating high
magnitudes to 1

o Interpretable as the probability of a feature defined by their
weight vector

o Interpretable as the (normalised) firing rate of a neuron

@ However...

e Saturation causes gradients to approach 0: If the output of a
sigmoid unit is h, then then gradient is h(1 — h) which
approaches 0 as h saturates to 0 or 1 - and hence the gradients
it multiplies into approach 0. Very small gradients result in
very small parameter changes, so learning becomes very slow

e Outputs are not centred at 0: The output of a sigmoid layer
will have mean> 0. This is numerically undesirable.

MLP Lecture 5 pal

= tanh(x)

05 -

= 00
—05 |
TS 0 1 2 3 F
X — ™% 1 + tanh 2
tanh(x) = % ; sigmoid(x) = +ar12(x/)

d
Derivative: e tanh(x) = 1 — tanh?(x)

MLP Lecture 5 22

tanh hidden units

@ tanh has same shape as sigmoid but has output range +1

@ Results about approximation capability of sigmoid networks
also apply to tanh networks

@ Possible reason to prefer tanh over sigmoid: allowing units to
be positive or negative allows gradient for weights into a
hidden unit to have a different sign

@ Saturation still a problem

h(z) 13

/ 5k:2) >

MLP Lecture 5 px}

Rectified Linear Unit — ReLU

40

5+ — redula) ||
0
251
= 201
15|
10}F

05

00 - - " I I I
-4 -3 -2 -1 o 1 2 3 4

relu(x) = max(0, x)

0 if x<0

d
Derivative: — rel =
rivativ ol u(x) {1 x>0

MLP Lecture 5 24

RelLU hidden units

@ Similar approximation results to tanh and sigmoid hidden units

@ Empirical results for speech and vision show consistent
improvements using relu over sigmoid or tanh

@ Unlike tanh or sigmoid there is no positive saturation —
saturation results in very small derivatives (and hence slower
learning)

o Negative input to relu results in zero gradient (and hence no
learning)

@ Relu is computationally efficient: max(0, x)
@ Relu units can “die” (i.e. respond with 0 to everything)

@ Relu units can be very sensitive to the learning rate

MLP Lecture 5 25

@ Unit that takes the max of two linear functions:
z=wh14pb i={1,2}
h = max(z1, z2)
(if wp = 0, by = 0 then we have Relu)
@ Has the benefits of Relu (piecewise linear, no saturation),

without the drawback of dying units
@ Twice the number of parameters

MLP Lecture 5 26

Generalising maxout

@ Units can take the max over G linear functions z;:

h= mGax(z,-)

1=

@ Maxout can be generalised to other functions, e.g. p-norm
G 1/p
h=llzll, = (Z IZ/\P)
i=0

@ p can be learned by gradient descent.
(Exercise: What is the gradient OE /Op for a p-norm unit?)

Typically p =2

MLP Lecture 5 27

@ Regularisation

e L2 regularisation — weight decay
o L1 regularisation — sparsity
o Creating additional training data
e Model combination
e Dropout
@ Hidden unit transfer functions
e tanh
e RelLU
e Maxout
@ Reading:
Michael Nielsen, chapter 3 of Neural Networks and Deep
Learning
http://neuralnetworksanddeeplearning.com/chap3.html

MLP Lecture 5 28

http://neuralnetworksanddeeplearning.com/chap3.html

