
Regularisation and Hidden Unit Transfer Functions

Steve Renals

Machine Learning Practical — MLP Lecture 5
19 October 2016

MLP Lecture 5 Regularisation and Hidden Unit Transfer Functions 1

Recap: Overtraining

Overtraining corresponds to a network function too closely fit
to the training set (too much flexibility)

Undertraining corresponds to a network function not well fit
to the training set (too little flexibility)

Solutions

If possible increasing both network complexity in line with the
training set size
Use prior information to constrain the network function
Control the flexibility: Structural Stabilisation
Control the effective flexibility: early stopping and
regularisation

MLP Lecture 5 Regularisation and Hidden Unit Transfer Functions 2

Regularisation

MLP Lecture 5 Regularisation and Hidden Unit Transfer Functions 3

Weight Decay (L2 Regularisation)

Weight decay puts a “spring” on weights

If training data puts a consistent force on a weight, it will
outweigh weight decay

If training does not consistently push weight in a direction,
then weight decay will dominate and weight will decay to 0

Without weight decay, weight would walk randomly without
being well determined by the data

Weight decay can allow the data to determine how to reduce
the effective number of parameters

MLP Lecture 5 Regularisation and Hidden Unit Transfer Functions 4

Penalizing Complexity

Consider adding a complexity term Ew to the network error
function, to encourage smoother mappings:

En = En
train︸ ︷︷ ︸

data term

+ βEW︸ ︷︷ ︸
prior term

Etrain is the usual error function:

En
train = −

K∑

k=1

tnk ln ynk

EW should be a differentiable flexiblity/complexity measure,
e.g.

EW = EL2 =
1

2

∑

i

w2
i

∂EL2

∂wi
= wi

MLP Lecture 5 Regularisation and Hidden Unit Transfer Functions 5

Penalizing Complexity

Consider adding a complexity term Ew to the network error
function, to encourage smoother mappings:

En = En
train︸ ︷︷ ︸

data term

+ βEW︸ ︷︷ ︸
prior term

Etrain is the usual error function:

En
train = −

K∑

k=1

tnk ln ynk

EW should be a differentiable flexiblity/complexity measure,
e.g.

EW = EL2 =
1

2

∑

i

w2
i

∂EL2

∂wi
= wi

MLP Lecture 5 Regularisation and Hidden Unit Transfer Functions 5

Penalizing Complexity

Consider adding a complexity term Ew to the network error
function, to encourage smoother mappings:

En = En
train︸ ︷︷ ︸

data term

+ βEW︸ ︷︷ ︸
prior term

Etrain is the usual error function:

En
train = −

K∑

k=1

tnk ln ynk

EW should be a differentiable flexiblity/complexity measure,
e.g.

EW = EL2 =
1

2

∑

i

w2
i

∂EL2

∂wi
= wi

MLP Lecture 5 Regularisation and Hidden Unit Transfer Functions 5

Gradient Descent Training with Weight Decay

∂En

∂wi
=
∂(En

train + EL2)

∂wi
=

(
∂En

train

∂wi
+ β

∂EL2

∂wi

)

=

(
∂En

train

∂wi
+ βwi

)

∆wi = −η
(
∂En

train

∂wi
+ βwi

)

Weight decay corresponds to adding EL2 = 1/2
∑

i w
2
i to the

error function

Addition of complexity terms is called regularisation

Weight decay is sometimes called L2 regularisation

MLP Lecture 5 Regularisation and Hidden Unit Transfer Functions 6

L1 Regularisation

L1 Regularisation corresponds to adding a term based on
summing the absolute values of the weights to the error:

En = En
train︸ ︷︷ ︸

data term

+ βEn
L1︸ ︷︷ ︸

prior term

= En
train + β|wi |

Gradients

∂En

∂wi
=
∂En

train

∂wi
+ β

∂EL1

∂wi

=
∂En

train

∂wi
+ β sgn(wi)

Where sgn(wi) is the sign of wi :
sgn(wi) = 1 if wi > 0 and sgn(wi) = −1 if wi < 0

MLP Lecture 5 Regularisation and Hidden Unit Transfer Functions 7

L1 vs L2

L1 and L2 regularisation both have the effect of penalising
larger weights

In L2 they shrink to 0 at a rate proportional to the size of the
weight (βwi)
In L1 they shrink to 0 at a constant rate (β sgn(wi))

Behaviour of L1 and L2 regularisation with large and small
weights:

when |wi | is large L2 shrinks faster than L1
when |wi | is small L1 shrinks faster than L2

So L1 tends to shrink some weights to 0, leaving a few large
important connections – L1 encourages sparsity

∂EL1/∂w is undefined when w = 0; assume it is 0 (i.e. take
sgn(0) = 0 in the update equation)

MLP Lecture 5 Regularisation and Hidden Unit Transfer Functions 8

Data Augmentation – Adding “fake” training data

Generalisation performance goes with the amount of training
data (change MNISTDataProvider to give training sets of
1 000 / 5 000 / 10 000 examples to see this)

Given a finite training set we could create further training
examples...

Create new examples by making small rotations of existing data
Add a small amount of random noise

Using “realistic” distortions to create new data is better than
adding random noise

MLP Lecture 5 Regularisation and Hidden Unit Transfer Functions 9

Model Combination

Combining the predictions of multiple models can reduce
overfitting

Model combination works best when the component models
are complementary – no single model works best on all data
points
Creating a set of diverse models

Different NN architectures (number of hidden units, number of
layers, hidden unit type, input features, type of regularisation,
...)
Different models (NN, SVM, decision trees, ...)

How to combine models?
Average their outputs
Linearly combine their outputs
Train another “combiner” neural network whose input is the
outputs of the component networks
Architectures designed to create a set of specialised models
which can be combined (e.g. mixtures of experts)

MLP Lecture 5 Regularisation and Hidden Unit Transfer Functions 10

Dropout

MLP Lecture 5 Regularisation and Hidden Unit Transfer Functions 11

Dropout

Dropout is a way of training networks to behave so that they
have the behaviour of an average of multiple networks

Dropout training:

Each mini-batch randomly delete a fraction (p ∼ 0.5) of the
hidden units (and their related weights and biases)
Then process the mini-batch (forward and backward) using
this modified network, and update the weights
Restore the deleted units/weights, choose a new random
subset of hidden units to delete and repeat the process

MLP Lecture 5 Regularisation and Hidden Unit Transfer Functions 12

Dropout Training - Complete Network

Output

Hidden

Input

MLP Lecture 5 Regularisation and Hidden Unit Transfer Functions 13

Dropout Training - First Minibatch

Output

Hidden

Input

p = 0.5

MLP Lecture 5 Regularisation and Hidden Unit Transfer Functions 14

Dropout Training - First Minibatch

Output

Hidden

Input

p = 0.5

MLP Lecture 5 Regularisation and Hidden Unit Transfer Functions 14

Dropout Training - Second Minibatch

Output

Hidden

Input

p = 0.5

MLP Lecture 5 Regularisation and Hidden Unit Transfer Functions 15

Dropout Training - Second Minibatch

Output

Hidden

Input

p = 0.5

MLP Lecture 5 Regularisation and Hidden Unit Transfer Functions 15

Dropout

Dropout is a way of training networks to behave so that they
have the behaviour of an average of multiple networks

Dropout training:

Each mini-batch randomly delete a fraction (p ∼ 0.5) of the
hidden units (and their related weights and biases)
Then process the mini-batch (forward and backward) using
this modified network, and update the weights
Restore the deleted units/weights, choose a new random
subset of hidden units to delete and repeat the process

When training is complete the network will have learned a
complete set of weights and biases, all learned when a fraction
p of the hidden units are missing. To compensate for this, in
the final network we scale hidden unit activations by p.

Inverted dropout: scale by 1/p when training, no scaling in
final network.

MLP Lecture 5 Regularisation and Hidden Unit Transfer Functions 16

Why does Dropout work?

Each mini-batch is like training a different network, since we
randomly select to dropout half the neurons

So we can imagine dropout as combining an exponential
number of networks

Since the component networks will be complementary and
overfit in different ways, dropout is implicit model combination

Also interpret dropout as training more robust hidden unit
features – each hidden unit cannot rely on all other hidden
unit features being present, must be robust to missing features

Dropout has been useful in improving the generalisation of
large-scale deep networks

Annealed Dropout: Dropout rate schedule starting with a
fraction p units dropped, decreasing at a constant rate to 0

Initially training with dropout
Eventually fine-tune all weights together

MLP Lecture 5 Regularisation and Hidden Unit Transfer Functions 17

Are there alternatives
to Sigmoid Hidden Units?

MLP Lecture 5 Regularisation and Hidden Unit Transfer Functions 18

Recap: Architectures of multi-layer networks

Outputs

�
(3)
1 �

(3)
` �

(3)
K

Hidden

Hidden

y1 y` yK

w
(3)
1k

w
(3)
`k

w
(3)
Kk

w
(2)
1j

w
(2)
kj

w
(2)
Hj

h
(2)
Hh

(2)
k

h
(2)
1

�
(2)
1 �

(2)
k

�
(2)
H

h
(1)
j

w
(1)
ji

�
(1)
j

xi
Inputs

�
(2)
k =

 X

m

�(3)
m wmk

!
h

(2)
k (1 � h

(2)
k)

@En

@w
(2)
kj

= �
(2)
k h

(1)
j

MLP Lecture 5 Regularisation and Hidden Unit Transfer Functions 19

Sigmoid function

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a

g(
a)

Logistic sigmoid activation function g(a) = 1/(1+exp(−a))

MLP Lecture 5 Regularisation and Hidden Unit Transfer Functions 20

Sigmoid Hidden Units

In their favour

Compress unbounded inputs to (0,1), saturating high
magnitudes to 1
Interpretable as the probability of a feature defined by their
weight vector
Interpretable as the (normalised) firing rate of a neuron

However...

Saturation causes gradients to approach 0: If the output of a
sigmoid unit is h, then then gradient is h(1− h) which
approaches 0 as h saturates to 0 or 1 - and hence the gradients
it multiplies into approach 0. Very small gradients result in
very small parameter changes, so learning becomes very slow
Outputs are not centred at 0: The output of a sigmoid layer
will have mean> 0. This is numerically undesirable.

MLP Lecture 5 Regularisation and Hidden Unit Transfer Functions 21

tanh

tanh(x) =
ex − e−x

ex + e−x
; sigmoid(x) =

1 + tanh(x/2)

2

Derivative:
d

dx
tanh(x) = 1− tanh2(x)

MLP Lecture 5 Regularisation and Hidden Unit Transfer Functions 22

tanh hidden units

tanh has same shape as sigmoid but has output range ±1

Results about approximation capability of sigmoid networks
also apply to tanh networks

Possible reason to prefer tanh over sigmoid: allowing units to
be positive or negative allows gradient for weights into a
hidden unit to have a different sign

Saturation still a problem

Hidden

Hidden

h
(2)
H

h
(2)
kh

(2)
1

�
(2)
k

h
(1)
jh

(1)
1

h
(1)
H

MLP Lecture 5 Regularisation and Hidden Unit Transfer Functions 23

Rectified Linear Unit – ReLU

relu(x) = max(0, x)

Derivative:
d

dx
relu(x) =

{
0 if x ≤ 0

1 if x > 0

MLP Lecture 5 Regularisation and Hidden Unit Transfer Functions 24

ReLU hidden units

Similar approximation results to tanh and sigmoid hidden units

Empirical results for speech and vision show consistent
improvements using relu over sigmoid or tanh

Unlike tanh or sigmoid there is no positive saturation –
saturation results in very small derivatives (and hence slower
learning)

Negative input to relu results in zero gradient (and hence no
learning)

Relu is computationally efficient: max(0, x)

Relu units can “die” (i.e. respond with 0 to everything)

Relu units can be very sensitive to the learning rate

MLP Lecture 5 Regularisation and Hidden Unit Transfer Functions 25

Maxout units

Unit that takes the max of two linear functions:

zi = wih
L−1 + bi i = {1, 2}

h = max(z1, z2)

(if w2 = 0, b2 = 0 then we have Relu)

Has the benefits of Relu (piecewise linear, no saturation),
without the drawback of dying units

Twice the number of parameters

maxmax
Layer L

+ ++

Layer L-1

+

MLP Lecture 5 Regularisation and Hidden Unit Transfer Functions 26

Generalising maxout

Units can take the max over G linear functions zi :

h =
G

max
i=0

(zi)

Maxout can be generalised to other functions, e.g. p-norm

h = ||z||p =

(
G∑

i=0

|zi |p
)1/p

Typically p = 2

p can be learned by gradient descent.
(Exercise: What is the gradient ∂E/∂p for a p-norm unit?)

MLP Lecture 5 Regularisation and Hidden Unit Transfer Functions 27

Summary

Regularisation

L2 regularisation – weight decay
L1 regularisation – sparsity
Creating additional training data
Model combination
Dropout

Hidden unit transfer functions

tanh
ReLU
Maxout

Reading:
Michael Nielsen, chapter 3 of Neural Networks and Deep
Learning
http://neuralnetworksanddeeplearning.com/chap3.html

MLP Lecture 5 Regularisation and Hidden Unit Transfer Functions 28

http://neuralnetworksanddeeplearning.com/chap3.html

