
Learning Multi-layer Networks

Steve Renals

Machine Learning Practical — MLP Lecture 4
12 October 2016

MLP Lecture 4 Learning Multi-layer Networks 1

Recap: Training multi-layer networks

Outputs

�
(3)
1 �

(3)
` �

(3)
K

Hidden

Hidden

y1 y` yK

w
(3)
1k

w
(3)
`k

w
(3)
Kk

w
(2)
1j

w
(2)
kj

w
(2)
Hj

h
(2)
Hh

(2)
k

h
(2)
1

�
(2)
1 �

(2)
k

�
(2)
H

h
(1)
j

w
(1)
ji

�
(1)
j

xi
Inputs

�
(2)
k =

 X

m

�(3)
m wmk

!
h

(2)
k (1� h

(2)
k)

@En

@w
(2)
kj

= �
(2)
k h

(1)
j

w
(2)
kj ← w

(2)
kj − η(δ

(2)
k h

(1)
j)

MLP Lecture 4 Learning Multi-layer Networks 2

How to set
the learning rate?

MLP Lecture 4 Learning Multi-layer Networks 3

Weight Updates

Let Di (t) = ∂E/∂wi (t) be the gradient of the error function
E with respect to a weight wi at update time t

“Vanilla” gradient descent updates the weight along the
negative gradient direction:

∆wi (t) = −ηDi (t)

wi (t + 1) = wi (t) + ∆wi (t)

Hyperparameter η - learning rate

Initialise η, and update as the training progresses (learning
rate schedule)

MLP Lecture 4 Learning Multi-layer Networks 4

Learning Rate Schedules

Proofs of convergence for stochastic optimisation rely on a
learning rate that reduces through time (as 1/t) - Robbins
and Munro (1951)

Learning rate schedule – typically initial larger steps followed
by smaller steps for fine tuning: Results in faster convergence
and better solutions

Time-dependent schedules

Piecewise constant: pre-determined η for each epoch)
Exponential: η(t) = η(0) exp(−t/r) (r ∼ training set size)
Reciprocal: η(t) = η(0)(1 + t/r)−c (c ∼ 1)

Performance-dependent η – e.g. “NewBOB”: fixed η until
validation set stops improving, then halve η each epoch (i.e.
constant, then exponential)

MLP Lecture 4 Learning Multi-layer Networks 5

Training with Momentum

∆wi (t) = −ηDi (t) + α∆wi (t − 1)

α ∼ 0.9 is the momentum

Weight changes start by following the gradient

After a few updates they start to have velocity – no longer
pure gradient descent

Momentum term encourages the weight change to go in the
previous direction

Damps the random directions of the gradients, to encourage
weight changes in a consistent direction

MLP Lecture 4 Learning Multi-layer Networks 6

Adaptive Learning Rates

Tuning learning rate (and momentum) parameters can be
expensive (hyperparameter grid search) – it works, but we can
do better

Adaptive learning rates and per-weight learning rates

AdaGrad – normalise the update for each weight
RMSProp – AdaGrad forces the learning rate to always
decrease, this constraint is relaxed with RMSProp
Adam – “RMSProp with momentum”

Well-explained by Andrej Karpathy at
http://cs231n.github.io/neural-networks-3/

MLP Lecture 4 Learning Multi-layer Networks 7

http://cs231n.github.io/neural-networks-3/

AdaGrad

Separate, normalised update for each weight

Normalised by the sum squared gradient S

Si (0) = 0

Si (t) = Si (t − 1) + Di (t)2

∆wi (t) =
−η√

Si (t) + ε
Di (t)

ε ∼ 10−8 is a small constant to prevent division by 0 errors
The update step for a parameter wi is normalised by the
(square root of) the sum squared gradients for that parameter

Weights with larger gradient magnitudes will have smaller
weight updates; small gradients result in larger updates
The effective learning rate for a parameter is forced to
monotonically decrease since the normalising term Si cannot
get smaller

Duchi et al, http://jmlr.org/papers/v12/duchi11a.html

MLP Lecture 4 Learning Multi-layer Networks 8

http://jmlr.org/papers/v12/duchi11a.html

RMSProp

RProp (http://dx.doi.org/10.1109/ICNN.1993.298623)
is a method for batch gradient descent which uses an adaptive
learning rate for each parameter and only the sign of the
gradient (equivalent to normalising by the gradient)

RMSProp is a stochastic gradient descent version of RProp
(Hinton, http://www.cs.toronto.edu/~tijmen/csc321/
slides/lecture_slides_lec6.pdf) normalised by a
moving average of the squared gradient – similar to AdaGrad,
but replacing the sum by a moving average for S :

Si (t) = βSi (t − 1) + (1− β)Di (t)2

∆wi (t) =
−η√

Si (t) + ε
Di (t)

β ∼ 0.9 is the decay rate

Effective learning rates no longer guaranteed to decrease

MLP Lecture 4 Learning Multi-layer Networks 9

http://dx.doi.org/10.1109/ICNN.1993.298623
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

Adam

Hinton commented about RMSProp: “Momentum does not
help as much as it normally does”

Adam (Kingma & Ba,
https://arxiv.org/abs/1412.6980) can be viewed as
addressing this – it is a variant of RMSProp with momentum:

Mi (t) = αMi (t − 1) + (1− α)Di (t)

Si (t) = βSi (t − 1) + (1− β)Di (t)2

∆wi (t) =
−η√

Si (t) + ε
Mi (t)

Here a momentum-smoothed gradient is used for the update
in place of the gradient. Kingman and Ba recommend
α ∼ 0.9, β ∼ 0.999

MLP Lecture 4 Learning Multi-layer Networks 10

https://arxiv.org/abs/1412.6980

Coursework 1

MNIST classification, working on a standard architecture (2 hidden
layers, each with 100 hidden units)

Part 1 Learning Rate Schedules – investigate either
exponential or reciprocal learning rate schedule
Part 2 Training with Momentum – investigate using a
gradient descent learning rule with momentum
Part 3 Adaptive Learning Rules – implement and investigate
two of AdaGrad, RMSProp, Adam

Submit a report (PDF), along with your notebook and python
code. Primarily assessed on the report which should include:

A clear description of the methods used and algorithms
implemented
Quantitative results for the experiments you carried out
including relevant graphs
Discussion of the results of your experiments and any
conclusions you have drawn

MLP Lecture 4 Learning Multi-layer Networks 11

Generalisation
in practice

MLP Lecture 4 Learning Multi-layer Networks 12

Generalization

How many hidden units (or, how many weights) do we need?

How many hidden layers do we need?

Generalization: what is the expected error on a test set?

Causes of error

Network too “flexible”: Too many weights compared with
number of training examples
Network not flexible enough: Not enough weights (hidden
units) to represent the desired mapping

When comparing models, it can be helpful to compare
systems with the same number of trainable parameters (i.e.
the number of trainable weights in a neural network)

Optimizing training set performance does not necessarily
optimize test set performance....

MLP Lecture 4 Learning Multi-layer Networks 13

Training / Test / Validation Data

Partitioning the data...

Training data – data used for training the network
Validation data – frequently used to measure the error of a
network on “unseen” data (e.g. after each epoch)
Test data – less frequently used “unseen” data, ideally only
used once

Frequent use of the same test data can indirectly “tune” the
network to that data (e.g. by influencing choice of
hyperparameters such as learning rate, number of hidden
units, number of layers,)

MLP Lecture 4 Learning Multi-layer Networks 14

Measuring generalisation

Generalization Error – The predicted error on unseen data.
How can the generalization error be estimated?

Training error?

Etrain = −
∑

training set

K∑

k=1

tnk ln yn
k

Validation error?

Eval = −
∑

validation set

K∑

k=1

tnk ln yn
k

MLP Lecture 4 Learning Multi-layer Networks 15

Cross-validation

Optimize network performance given a fixed training set

Hold out a set of data (validation set) and predict
generalization performance on this set

1 Train network in usual way on training data
2 Estimate performance of network on validation set

If several networks trained on the same data, choose the one
that performs best on the validation set (not the training set)

n-fold Cross-validation: divide the data into n partitions;
select each partition in turn to be the validation set, and train
on the remaining (n − 1) partitions. Estimate generalization
error by averaging over all validation sets.

MLP Lecture 4 Learning Multi-layer Networks 16

Overtraining

Overtraining corresponds to a network function too closely fit
to the training set (too much flexibility)

Undertraining corresponds to a network function not well fit
to the training set (too little flexibility)

Solutions

If possible increasing both network complexity in line with the
training set size
Use prior information to constrain the network function
Control the flexibility: Structural Stabilization
Control the effective flexibility: early stopping and
regularization

MLP Lecture 4 Learning Multi-layer Networks 17

Structural Stabilization

Directly control the number of weights:

Compare models with different numbers of hidden units

Start with a large network and reduce the number of weights
by pruning individual weights or hidden units

Weight sharing — use prior knowledge to constrain the
weights on a set of connections to be equal.
→ Convolutional Neural Networks

MLP Lecture 4 Learning Multi-layer Networks 18

Early Stopping

Use validation set to decide when to stop training

Training Set Error monotonically decreases as training
progresses

Validation Set Error will reach a minimum then start to
increase

MLP Lecture 4 Learning Multi-layer Networks 19

Early Stopping

Validation

Training

E

tt*

MLP Lecture 4 Learning Multi-layer Networks 20

Early Stopping

Use validation set to decide when to stop training

Training Set Error monotonically decreases as training
progresses

Validation Set Error will reach a minimum then start to
increase

Best generalization predicted to be at point of minimum
validation set error

“Effective Flexibility” increases as training progresses

Network has an increasing number of “effective degrees of
freedom” as training progresses

Network weights become more tuned to training data

Very effective — used in many practical applications such as
speech recognition and optical character recognition

MLP Lecture 4 Learning Multi-layer Networks 21

Early Stopping

Use validation set to decide when to stop training

Training Set Error monotonically decreases as training
progresses

Validation Set Error will reach a minimum then start to
increase

Best generalization predicted to be at point of minimum
validation set error

“Effective Flexibility” increases as training progresses

Network has an increasing number of “effective degrees of
freedom” as training progresses

Network weights become more tuned to training data

Very effective — used in many practical applications such as
speech recognition and optical character recognition

MLP Lecture 4 Learning Multi-layer Networks 21

Summary

Learning rates and weight updates

Coursework 1

Generalisation in practice

Reading:
Michael Nielsen, chapters 2 & 3 of Neural Networks and Deep
Learning
http://neuralnetworksanddeeplearning.com/

Andrej Karpathy, CS231n notes (Stanford)
http://cs231n.github.io/neural-networks-3/

Diederik Kingma and Jimmy Ba, “Adam: A Method for
Stochastic Optimization”, ICLR-2015
https://arxiv.org/abs/1412.6980

MLP Lecture 4 Learning Multi-layer Networks 22

http://neuralnetworksanddeeplearning.com/
http://cs231n.github.io/neural-networks-3/
https://arxiv.org/abs/1412.6980

