
What Do
Neural Networks Do?

MLP Lecture 3 Multi-layer networks 1

Multi-layer networks

Steve Renals

Machine Learning Practical — MLP Lecture 3
7 October 2015

MLP Lecture 3 Multi-layer networks 2

What Do
Single Layer

Neural Networks Do?

MLP Lecture 3 Multi-layer networks 3

Single layer network

Single-layer network, 1 output, 2 inputs + bias

+

x0 x1 x2

MLP Lecture 3 Multi-layer networks 4

Geometric interpretation

Single-layer network, 1 output, 2 inputs + bias

w

�w0

||w||

x1

x2

y(w;x) = 0

Bishop, sec 3.1

MLP Lecture 3 Multi-layer networks 5

Example data (three classes)

−4 −3 −2 −1 0 1 2 3 4 5
−4

−3

−2

−1

0

1

2

3

4

5
Data

MLP Lecture 3 Multi-layer networks 6

Classification regions with single-layer network

−4 −3 −2 −1 0 1 2 3 4 5
−4

−3

−2

−1

0

1

2

3

4

5
Plot of Decision regions

Single-layer networks are limited to linear classification boundaries

MLP Lecture 3 Multi-layer networks 7

Single layer network trained on MNIST Digits

0
10 Outputs

Bias

784 Inputs + bias

785x10 weight matrix

1 2 3 4 5 6 7 8 9

. . . .

28x28

Output weights define a “template” for each class

MLP Lecture 3 Multi-layer networks 8

Hinton Diagrams

Visualise the weights for class k

. . . .
400 (20x20) inputs

MLP Lecture 3 Multi-layer networks 9

Hinton diagram for single layer network trained on MNIST

Weights for each class act as a “discriminative template”
Inner product of class weights and input to measure closeness
to each template
Classify to the closest template (maximum value output)

0 1

2 3
MLP Lecture 3 Multi-layer networks 10

Multi-Layer Networks

MLP Lecture 3 Multi-layer networks 11

From templates to features

Good classification needs to cope with the variability of real
data: scale, skew, rotation, translation,

Very difficult to do with a single template per class

Could have multiple templates per task... this will work, but
we can do better

Use features rather than templates

(images from: Michael Nielsen, Neural Networks and Deep Learning,

http://neuralnetworksanddeeplearning.com/chap1.html)

MLP Lecture 3 Multi-layer networks 12

http://neuralnetworksanddeeplearning.com/chap1.html

Incorporating features in neural network architecture

Layered processing: inputs - features - classification

How to obtain features - learning!

0

Bias

1 2 3 4 5 6 7 8 9

. . . .

.

MLP Lecture 3 Multi-layer networks 13

Incorporating features in neural network architecture

Layered processing: inputs - features - classification

How to obtain features - learning!

0

Bias

1 2 3 4 5 6 7 8 9

. . . .

.

MLP Lecture 3 Multi-layer networks 14

Incorporating features in neural network architecture

Layered processing: inputs - features - classification

How to obtain features - learning!

0

Bias

1 2 3 4 5 6 7 8 9

. . . .

.

MLP Lecture 3 Multi-layer networks 15

Multi-layer network

. . . .

. . . . g ggg

. . . . + +++

+ + + +. . . .

f f f f. . . .
Softmax

Sigmoid

yk

xi

a
(1)
j

a
(2)
k

w
(2)
kj

w
(1)
ji

Outputs

Inputs

Hidden layerh
(1)
j

yk = softmax(
H∑

r=0

w
(2)
kr h

(1)
r) ; h

(1)
j = sigmoid(

d∑

s=0

w
(1)
js xs)

MLP Lecture 3 Multi-layer networks 16

Multi-layer network for MNIST

(image from: Michael Nielsen, Neural Networks and Deep Learning,

http://neuralnetworksanddeeplearning.com/chap1.html)

MLP Lecture 3 Multi-layer networks 17

http://neuralnetworksanddeeplearning.com/chap1.html

Training MLPs: Credit assignment

Hidden units make training the weights more complicated,
since the hidden units affect the error function indirectly via
all the outputs

The Credit assignment problem: what is the “error” of a

hidden unit? how important is input-hidden weight w
(1)
ji to

output unit k?

Solution: Gradient descent – requires derivatives of the error
with respect to each weight

Algorithm: back-propagation of error (backprop)

Backprop gives a way to compute the derivatives. These
derivatives are used by an optimisation algorithm (e.g.
gradient descent) to train the weights.

MLP Lecture 3 Multi-layer networks 18

Training MLPs: Error function and required gradients

Cross-entropy error function:

En = −
C∑

k=1

tnk ln ynk

Required gradients:

∂En

∂w
(2)
kj

;
∂En

∂w
(1)
ji

Gradient for hidden-to-output weights similar to
single-layer network:

∂En

∂w
(2)
kj

=
∂En

∂a
(2)
k

· ∂a
(2)
k

∂wkj
=

(
C∑

c=1

∂En

∂yc
· ∂yc
∂a

(2)
k

)
· ∂a

(2)
k

∂wkj

= (yk − tk)︸ ︷︷ ︸
δ
(2)
k

h
(1)
j

MLP Lecture 3 Multi-layer networks 19

Multi-layer network

. . . .

. . . . g ggg

. . . . + +++

+ + + +. . . .

f f f f. . . .
Softmax

Sigmoid

yk

xi

a
(1)
j

a
(2)
k

w
(2)
kj

w
(1)
ji

Outputs

Inputs

Hidden layerh
(1)
j

yk = softmax(
H∑

r=0

w
(2)
kr h

(1)
r) ; h

(1)
j = sigmoid(

d∑

s=0

w
(1)
js xs)

MLP Lecture 3 Multi-layer networks 20

Training MLPs: Input-to-hidden weights

∂En

∂w
(1)
ji

=
∂En

∂a
(1)
j︸ ︷︷ ︸

δ
(1)
j

·
∂a

(1)
j

∂w
(1)
ji︸ ︷︷ ︸
xi

To compute δ
(1)
j = ∂En/∂a

(1)
j , the error signal for hidden unit j ,

we must sum over all the output units’ contributions to δ
(1)
j :

δ
(1)
j =

K∑

c=1

∂En

∂a
(2)
c

· ∂a
(2)
c

∂a
(1)
j

=

K∑

c=1

δ
(2)
c · ∂a

(2)
c

∂h
(1)
j

 ·

∂h
(1)
j

∂a
(1)
j

=

(
K∑

c=1

δ
(2)
c w

(2)
cj

)
h
(1)
j (1 − h

(1)
j)

MLP Lecture 3 Multi-layer networks 21

Training MLPs: Gradients

∂En

∂w
(2)
kj

= (yk − tk)︸ ︷︷ ︸
δ
(2)
k

·h(1)j

∂En

∂w
(1)
ji

=

(
k∑

c=1

δ
(2)
c w

(2)
cj

)
h
(1)
j (1 − h

(1)
j)

︸ ︷︷ ︸
δ
(1)
j

·xi

MLP Lecture 3 Multi-layer networks 22

Back-propagation of error: hidden unit error signal

Outputs

Hidden units

xi

w(2)
1 j w(2)

ℓ j

w(1)
ji

yKy�y1

w(2)
K j

hj

MLP Lecture 3 Multi-layer networks 23

Back-propagation of error: hidden unit error signal

Outputs

Hidden units

xi

w(2)
1 j w(2)

ℓ j

w(1)
ji

yKy�y1

w(2)
K j

hj

�
(2)
K

�
(2)
`�

(2)
1

MLP Lecture 3 Multi-layer networks 23

Back-propagation of error: hidden unit error signal

Outputs

Hidden units

xi

w(2)
1 j w(2)

ℓ j

w(1)
ji

yKy�y1

w(2)
K j

hj

�
(1)
j =

 X

`

�
(2)
l w`j

!
hj(1 � hj)

�
(2)
1 �

(2)
` �

(2)
K

MLP Lecture 3 Multi-layer networks 23

Back-propagation of error

The back-propagation of error algorithm is summarised as
follows:

1 Apply an input vectors from the training set, x, to the network
and forward propagate to obtain the output vector y

2 Using the target vector t compute the error E n

3 Evaluate the error signals δ
(2)
k for each output unit

4 Evaluate the error signals δ
(1)
j for each hidden unit using

back-propagation of error
5 Evaluate the derivatives for each training pattern, summing to

obtain the overall derivatives

Back-propagation can be extended to multiple hidden layers,
in each case computing the δ(`)s for the current layer as a
weighted sum of the δ(`+1)s of the next layer

MLP Lecture 3 Multi-layer networks 24

Training with multiple hidden layers

Outputs

�
(3)
1 �

(3)
` �

(3)
K

Hidden

Hidden

y1 y` yK

w
(3)
1k

w
(3)
`k

w
(3)
Kk

w
(2)
1j

w
(2)
kj

w
(2)
Hj

h
(2)
Hh

(2)
k

h
(2)
1

�
(2)
1 �

(2)
k

�
(2)
H

h
(1)
j

w
(1)
ji

�
(1)
j

xi
Inputs

MLP Lecture 3 Multi-layer networks 25

Summary

Understanding what single-layer networks compute

How multi-layer networks allow feature computation

Training multi-layer networks using back-propagation of error

Reading:
Michael Nielsen, chapter 1 of Neural Networks and Deep
Learning
http://neuralnetworksanddeeplearning.com/chap1.html

Chris Bishop, Sections 3.1, 3.2, and Chapter 4 of Neural
Networks for Pattern Recognition

MLP Lecture 3 Multi-layer networks 26

http://neuralnetworksanddeeplearning.com/chap1.html

