Introduction to MLP: Single Layer Networks

Steve Renals

Machine Learning Practical — MLP Lecture 1
23 September 2015
http://www.inf.ed.ac.uk/teaching/courses/mlp/

MLP – Course Details

- People
 - Lecturer: Steve Renals
 - TA: Pawel Swietojanski
 - Demonstrator: Matt Graham
 - Marker: Vladimir Nikishkin

- Format
 - Assessed by coursework only
 - 1 lecture/week
 - 1 lab/week (but multiple sessions)

- Requirements
 - Programming Ability (we will use python/numpy)
 - Mathematical Confidence
 - Knowledge of Machine Learning (e.g. Inf2B, IAML)

 Do not do MLP if you do not meet the requirements

MLP – Course Content

- Main focus: implementing deep neural networks
- Main task: handwritten digit recognition (MNIST)
- Approach: implement DNN training and experimental setups within a provided framework
- What will you implement?
 - Single layer networks
 - Multi-layer (deep) networks
 - Convolutional networks
 - (Recurrent networks?)

Practicals and Coursework

- Practical work will be carried out using Python / Numpy / iPython notebook
- We’ll provide a basic framework (which you will help to write) introduced through the labs
- Two pieces of assessed coursework:
 1. Implementing and testing of a basic deep neural network on
 the MNIST handwritten digit classification task
 (due 22 October 2015, worth 30%)
 2. Implementing and testing a convolutional network on MNIST, plus further experiments
 (due 14 January 2016, worth 70%)

MNIST Handwritten Digits

Practical Questions

- Must I work within the provided framework? – Yes
- Can I look at other deep neural network software (e.g. Theano, Torch, …)? – Yes, if you want to
- Can I copy other software? No
- Can I discuss my practical work with other students? – Yes
- Can we work together? – No

Good Scholarly Practice. Please remember the University requirement as regards all assessed work. Details about this can be found at:
http://www.ed.ac.uk/schools-departments/academic-services/students/undergraduate/discipline/academic-misconduct
and at:
http://web.inf.ed.ac.uk/infweb/admin/policies/academic-misconduct
Single Layer Networks

Input vector \(x = (x_1, x_2, \ldots, x_d)^T \)
Output vector \(y = (y_1, y_2, \ldots, y_K)^T \)
Weight matrix \(W \): \(w_{ki} \) is the weight from input \(x_i \) to output \(y_k \)
Bias \(w_{k0} \) is the bias for output \(y_k \)

\[
y_k = \sum_{i=0}^{d} w_{ki} x_i + w_{k0}
\]

If we define \(x_0 = 1 \) we can simplify the above to

\[
y_k = \sum_{i=0}^{d} w_{ki} x_i ; \quad y = Wx
\]

Training Single Layer Networks

Training set \(N \) input/output pairs \(\{(x^n, t^n) : 1 \leq n \leq N\} \)
Target vector \(t^n = (t^n_1, \ldots, t^n_K)^T \) - the target output for input \(x^n \)
Training problem Set the values of the weight matrix \(W \) such that each input \(x^n \) is mapped to its target \(t^n \)

Error function We define the training problem in terms of an error function \(E \) defined in terms of the network outputs \(y^n \) and the targets \(t^n \). Training corresponds to minimizing the error function \(E \)

Notes
- This is a supervised learning setup - there is a target output for each input.
- We can also write the network output vector as \(y^n(x^n; W) \) to explicitly show the dependence on the weight matrix and the input vector.

Error function

- Error function should measure how far an output vector is from its target
- Take the (squared) Euclidean distance – squared error function:

\[
E = \frac{1}{2} \sum_{n=1}^{N} ||y^n - t^n||^2 = \sum_{n=1}^{N} E^n
\]

\[
E^n = \frac{1}{2} ||y^n - t^n||^2
\]

\(E \) is the total error summed over the training set \(E^n \) is the error for the \(n \)th training example
- Can write \(E^n \) in terms of components:

\[
E^n = \frac{1}{2} \sum_{k=1}^{K} (y^n_k - t^n_k)^2
\]

- Training process: set \(W \) to minimise \(E \) given the training set
Weight space and gradients

- **Weight space**: A $K \times d$ dimension space – each possible weight matrix corresponds to a point in weight space. $E(W)$ is the value of the error at a specific point in weight space (given the training data).

- **Gradient** of $E(W)$ given W is $\nabla_W E$, the vector of partial derivatives of E with respect to the elements of W:

 $$\nabla_W E = \left(\frac{\partial E}{\partial w_{00}}, \ldots, \frac{\partial E}{\partial w_{Kd}} \right)^T$$

- **Gradient Descent Training**: adjust the weight matrix by moving a small direction down the gradient, which is the direction along which E decreases most rapidly.
 - update each weight w_{ki} by adding a factor $-\eta \cdot \frac{\partial E}{\partial w_{ki}}$.
 - η is a small constant called the step size or learning rate.

Gradient Descent Pseudocode

1. procedure `GradientDescentTraining(X,T,W)`
2. initialize W to small random numbers
3. while not converged do
4. for all k, i: Δw_{ki} ← 0
5. for n ← 1, N do
6. for k ← 1, K do
7. y_k^n ← $\sum_{i=0}^d w_{ki} x_i^n$
8. δ_k^n ← $y_k^n - t_k^n$
9. for i ← 1, d do
10. Δw_{ki} ← $\Delta w_{ki} + \delta_k^n \cdot x_i^n$
11. end for
12. end for
13. end for
14. for all k, i: w_{ki} ← $w_{ki} - \eta \cdot \Delta w_{ki}$
15. end while
16. end procedure

Apply gradient descent to a single-layer network

- Need to differentiate the error function with respect to each weight:

 $$E^n = \frac{1}{2} \sum_{k=1}^K (y_k^n - t_k^n)^2 = \frac{1}{2} \sum_{k=1}^K \left(\sum_{i=0}^d w_{ki} x_i^n - t_k^n \right)^2$$

 $$\frac{\partial E^n}{\partial w_{rs}} = t_k^n - y_k^n$$

 $$\frac{\partial E^n}{\partial w_{rs}} = \sum_{n=1}^N \frac{\partial E^n}{\partial y_k^n} = \sum_{n=1}^N \delta_k^n x_i^n$$

- So the weight update is

 $$w_{rs} \leftarrow w_{rs} - \eta \sum_{n=1}^N \delta_k^n x_i^n$$

 This is sometimes called the delta rule.

Gradient Descent Procedure

1. Initialise the weight matrix with small random weights and load the training data
2. For each epoch
 a. Initialise weight changes Δw_{ki} to zero
 b. For each training example n
 i. Compute the error E^n
 ii. Compute the gradients $\frac{\partial E^n}{\partial w_{ki}}$ for all k, i
 iii. Update the total gradient by a small amount in the direction of $\nabla_W E$:
 $$\Delta w_{ki} \leftarrow \Delta w_{ki} + \frac{\partial E^n}{\partial w_{ki}} \forall k, i$$
 c. Update weights: $w_{ki} \leftarrow w_{ki} - \eta \Delta w_{ki}$ \forall k, i
3. Terminate either after a fixed number of epochs, or when the error stops decreasing by more than a threshold.
 (An epoch is a complete pass through the training data)

Apply gradient descent to a single-layer network

A single layer network is a set of linear equations... Can we not solve for the weights directly given a training set? Why use gradient descent?

This is indeed possible for single-layer systems (consider linear regression!). But direct solutions are not possible for (more interesting) systems with nonlinearities and multiple layers, covered in the rest of the course. So we just look at iterative optimisation schemes.
Example: Rainfall Prediction

Daily Southern Scotland precipitation (mm). Values may change after QC.

<table>
<thead>
<tr>
<th>Year</th>
<th>Month</th>
<th>Precipitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1931</td>
<td>12</td>
<td>3.20</td>
</tr>
<tr>
<td>1931</td>
<td>10</td>
<td>4.40</td>
</tr>
<tr>
<td>1931</td>
<td>9</td>
<td>19.39</td>
</tr>
<tr>
<td>1931</td>
<td>7</td>
<td>2.41</td>
</tr>
<tr>
<td>1931</td>
<td>3</td>
<td>0.10</td>
</tr>
<tr>
<td>1931</td>
<td>1</td>
<td>12.71</td>
</tr>
<tr>
<td>1932</td>
<td>12</td>
<td>3.20</td>
</tr>
<tr>
<td>1932</td>
<td>10</td>
<td>4.40</td>
</tr>
<tr>
<td>1932</td>
<td>9</td>
<td>19.39</td>
</tr>
<tr>
<td>1932</td>
<td>7</td>
<td>2.41</td>
</tr>
<tr>
<td>1932</td>
<td>3</td>
<td>0.10</td>
</tr>
<tr>
<td>1932</td>
<td>1</td>
<td>12.71</td>
</tr>
</tbody>
</table>

Single Layer Network for Rainfall Prediction

Output - predicted observation
\[\hat{t} = \sum_{i=0}^{d} \theta_i \]

Input - previous \(d-1\) observations

Summary

- Single layer network architecture
- Training sets, error functions, and weight space
- Gradient descent training
- Example – Rainfall prediction
- Lab 1 - Mon/Tue/Wed next week: Setup, training data
 - Signup using the doodle link on the course webpage!
- Next lecture:
 - Stochastic gradient descent and minibatches
 - Classification
 - Introduction to multi-layered networks