Models and Languages for Computational Systems Biology – Lecture 14
Structural Analysis of Petri Nets

Jane Hillston.
LFCS and CSBE, University of Edinburgh

3rd March 2011
Outline

Quick recap

Structural properties and qualitative behaviour

Small example

References
Formal definition of a Petri net

A Petri net is a quadruple $\mathcal{N} = (P, T, f, m_0)$, where

- P and T are finite, non-empty and disjoint sets. P is the set of places and T is the set of transitions.
- f, sometimes called the flow relation, is a function $f : ((P \times T) \cup (T \times P)) \rightarrow \mathbb{N}_0$ which defines the set of directed arcs, weighted by nonnegative integer values.
- $m_0 : P \rightarrow \mathbb{N}_0$ is the initial marking.
Formal definition of a Petri net

A Petri net is a quadruple $\mathcal{N} = (P, T, f, m_0)$, where

- P and T are finite, non empty and disjoint sets. P is the set of places and T is the set of transitions.

- f, sometimes called the flow relation, is a function $f : ((P \times T) \cup (T \times P)) \rightarrow \mathbb{N}_0$ which defines the set of directed arcs, weighted by nonnegative integer values.

- $m_0 : P \rightarrow \mathbb{N}_0$ is the initial marking.

The state of the system at any time, is characterised by the distribution of tokens over the places, generally termed a marking: $m : P \rightarrow \mathbb{N}_0$, where $m(p) = n$ means that there are n tokens on place p.
Notation for structural analysis

One of the strengths of Petri nets is that they have well-developed techniques for structural analysis which can be used for qualitative analysis of systems biology models.
Notation for structural analysis

One of the strengths of Petri nets is that they have well-developed techniques for structural analysis which can be used for qualitative analysis of systems biology models.

The \textit{preset} of a node $x \in P \cup T$ is defined as

$$\bullet x = \{ y \in P \cup T \mid f(y, x) \neq 0 \}$$
Notation for structural analysis

One of the strengths of Petri nets is that they have well-developed techniques for structural analysis which can be used for qualitative analysis of systems biology models.

The \textit{preset} of a node $x \in P \cup T$ is defined as

$$\cdot x = \{ y \in P \cup T \mid f(y, x) \neq 0 \}$$

The \textit{postset} of a node $x \in P \cup T$ is defined as

$$x\cdot = \{ y \in P \cup T \mid f(x, y) \neq 0 \}$$
The firing rule

Let $\mathcal{N} = (P, T, f, m_0)$ be a Petri net.

- A transition t is **enabled** in a marking m, written as $m[t]$, if $\forall p \in \bullet t : m(p) \geq f(p, t)$; otherwise t is **disabled**.

- A transition which is enabled in m may **fire**.

- When t in m fires, a new marking m' is reach, written as $m[t]m'$, where $\forall p \in P : m'(p) = m(p) - f(p, t) + f(t, p)$.

- The firing happens **atomically and instantaneously**.
Incidence matrix

All the information about the structure of the net can be captured in the incidence matrix.
Incidence matrix

All the information about the structure of the net can be captured in the incidence matrix.

Given a Petri net \(N = (P, T, f, m_0) \), the incidence matrix is a \(|P| \times |T| \)-matrix where the entry \((p, t)\) records the impact of the transition \(t \) on the place \(p \).
Incidence matrix

All the information about the structure of the net can be captured in the incidence matrix.

Given a Petri net $\mathcal{N} = (P, T, f, m_0)$, the incidence matrix is a $|P| \times |T|$-matrix where the entry (p, t) records the impact of the transition t on the place p.

More formally, the incidence matrix $C : P \times T \rightarrow \mathbb{Z}$, indexed by P and T, where $C(p, t) = f(t, p) - f(p, t)$.
Incidence matrix

All the information about the structure of the net can be captured in the incidence matrix.

Given a Petri net $\mathcal{N} = (P, T, f, m_0)$, the incidence matrix is a $|P| \times |T|$-matrix where the entry (p, t) records the impact of the transition t on the place p.

More formally, the incidence matrix $\mathbb{C} : P \times T \rightarrow \mathbb{Z}$, indexed by P and T, where $\mathbb{C}(p, t) = f(t, p) - f(p, t)$.

It is sometimes convenient to express the incidence matrix as $\mathbb{C} = Post - Pre$ where $Post(p, t) = f(t, p)$ and $Pre = f(p, t)$.
Incidence matrix

All the information about the structure of the net can be captured in the incidence matrix.

Given a Petri net $N = (P, T, f, m_0)$, the incidence matrix is a $|P| \times |T|$-matrix where the entry (p, t) records the impact of the transition t on the place p.

More formally, the incidence matrix $C : P \times T \rightarrow \mathbb{Z}$, indexed by P and T, where $C(p, t) = f(t, p) - f(p, t)$.

It is sometimes convenient to express the incidence matrix as $C = Post - Pre$ where $Post(p, t) = f(t, p)$ and $Pre = f(p, t)$.

Note that the incidence matrix is independent of the state or marking of the system.
Let $\mathcal{N} = (P, T, f, m_0)$ be a Petri net.

The **reachability graph** of \mathcal{N} is the graph $RG(\mathcal{N}) = (V_N, E_N)$, where

- $V_N = [m_0]$ is the set of nodes,
- $E_N = \{(m, t, m') \mid m, m' \in [m_0], t \in T$ such that $m[t]m'$ is the set of arcs.\}
Structural analysis of Petri nets

There are three key general behavioural properties which can be considered for Petri nets. These are:

Boundedness: A Petri net is bounded if each place is bounded; a place is bounded if the number of tokens in the place cannot grow without limit, i.e. it is bounded by some finite constant.

Liveness: A Petri net is live if each of its transitions is live; a transition is live if whenever it fires, it is always possible to progress to a state where this transition is enabled.

Reversibility: For every marking the net is always able to return to this marking; specifically the net can reinitialise itself.
Structural analysis of Petri nets

There are three key general behavioural properties which can be considered for Petri nets. These are:

Boundedness: A Petri net is *bounded* if each place is *bounded*; a place is bounded if the number of tokens in the place cannot grow without limit, i.e. it is bounded by some finite constant.

Liveness: A Petri net is *live* if each of its transitions is *live*; a transition is live if whenever it fires, it is always possible to progress to a state where this transition is enabled.

Reversibility: For every marking the net is always able to return to this marking; specifically the net can reinitialise itself.

You will recall that we considered these are the level of the labelled transition system when we were discussing CSL model checking, but here we consider definition at the level of the Petri net.
Boundedness

A place p is **k-bounded** (bounded for short) if there exists a positive integer k, which represents an upper bound for the number of tokens on this place in all reachable markings of the Petri net:

$$k \in \mathbb{N}_0 : \forall m \in [m_0] : m(p) \leq k$$

A Petri net is **k-bounded** if all its places are k-bounded.

A Petri net is **structurally bounded** if it is bounded for any initial marking.
Boundedness

A place p is **k-bounded** (bounded for short) if there exists a positive integer k, which represents an upper bound for the number of tokens on this place in all reachable markings of the Petri net:

$$k \in \mathbb{N}_0 : \forall m \in [m_0] : m(p) \leq k$$

A Petri net is **k-bounded** if all its places are k-bounded.

A Petri net is **structurally bounded** if it is bounded for **any** initial marking.

In biological terms boundedness means that there is no possibility of an unlimited increase of some species within the system.
Liveness

A transition t is **dead in the marking** m if it is not enabled in any marking m' reachable from m, i.e. $\nexists m' \in [m] : m'[t]$.
Liveness

A transition \(t \) is **dead** in the marking \(m \) if it is not enabled in any marking \(m' \) reachable from \(m \), i.e. \(\not\exists m' \in [m] : m'[t] \)

A transition \(t \) is **live** if it is not dead in any marking reachable from \(m_0 \).
Liveness

A transition t is **dead** in the marking m if it is not enabled in any marking m' reachable from m, i.e. \(\nexists m' \in [m] : m'[t] \)

A transition t is **live** if it is not dead in any marking reachable from m_0.

A marking m is **dead** if there is no transition which is enabled in m, i.e. \(\nexists t \in T : m[t] \).
Liveness

A transition \(t \) is dead in the marking \(m \) if it is not enabled in any marking \(m' \) reachable from \(m \), i.e. \(\nexists m' \in [m] : m'[t] \)

A transition \(t \) is live if it is not dead in any marking reachable from \(m_0 \).

A marking \(m \) is dead if there is no transition which is enabled in \(m \), i.e. \(\nexists t \in T : m[t] \).

A Petri net is deadlock-free (weakly live) if there are no reachable dead markings.
Liveness

A transition \(t \) is **dead in the marking** \(m \) if it is not enabled in any marking \(m' \) reachable from \(m \), i.e. \(\exists m' \in [m] : m'[t] \)

A transition \(t \) is **live** if it is not dead in any marking reachable from \(m_0 \).

A marking \(m \) is **dead** if there is no transition which is enabled in \(m \), i.e. \(\exists t \in T : m[t] \).

A Petri net is **deadlock-free (weakly live)** if there are no reachable dead markings.

A Petri net is **live (strongly live)** if each transition is live.
Liveness

A transition t is **dead in the marking** m if it is not enabled in any marking m' reachable from m, i.e. $\nexists m' \in [m] : m'[t]$

A transition t is **live** if it is not dead in any marking reachable from m_0.

A marking m is **dead** if there is no transition which is enabled in m, i.e. $\nexists t \in T : m[t]$.

A Petri net is **deadlock-free (weakly live)** if there are no reachable dead markings.

A Petri net is **live (strongly live)** if each transition is live.

In biological terms liveness means that all reactions in the system remain possible at some future time.
A Petri net is reversible if the initial marking can be reached again from each reachable marking, i.e. $\forall m \in [m_0] : m_0 \in [m]$.
Reversibility

A Petri net is **reversible** if the initial marking can be reached again from each reachable marking, i.e. $\forall m \in [m_0] : m_0 \in [m]$.

In biological terms reversibility means that the behaviour of the system is recurrent.
Net Structure Classifications

- A Petri net is called a **State Machine (SM)** if
 \[\forall t \in T : |\bullet t| = |t^\bullet| \leq 1, \text{ i.e. there are neither forward branching or backward branching transitions.} \]
Net Structure Classifications

- A Petri net is called a **State Machine (SM)** if
 \(\forall t \in T : |\cdot t| = |t\cdot| \leq 1 \), i.e. there are neither forward branching or backward branching transitions.

- A Petri net is called a **Synchronization Graph (SG)** if
 \(\forall p \in P : |\cdot p| = |p\cdot| \leq 1 \), i.e. there are neither forward branching nor backward branching places.
Net Structure Classifications

- A Petri net is called a **State Machine (SM)** if
 \[\forall t \in T : |\cdot t| = |t\cdot| \leq 1, \text{ i.e. there are neither forward branching or backward branching transitions.} \]

- A Petri net is called a **Synchronization Graph (SG)** if
 \[\forall p \in P : |\cdot p| = |p\cdot| \leq 1, \text{ i.e. there are neither forward branching nor backward branching places.} \]

- A Petri net is called **Extended Free Choice (EFC)** if
 \[\forall p, q \in P \text{ if } p\cdot \cap q\cdot \neq \emptyset \text{ then } \forall t \in q\cdot \cup p\cdot, f(q, t) = f(p, t), \text{ i.e. transitions in conflict have identical sets of pre-places and the same flow relation. Sometimes termed Equal Conflict (EC).} \]
Net Structure Classifications

- A Petri net is called a **State Machine (SM)** if \(\forall t \in T : |\cdot t| = |t^\cdot| \leq 1 \), i.e. there are neither forward branching or backward branching transitions.

- A Petri net is called a **Synchronization Graph (SG)** if \(\forall p \in P : |\cdot p| = |p^\cdot| \leq 1 \), i.e. there are neither forward branching nor backward branching places.

- A Petri net is called **Extended Free Choice (EFC)** if \(\forall p, q \in P \) if \(p^\cdot \cap q^\cdot \neq \emptyset \) then \(\forall t \in q^\cdot \cup p^\cdot, f(q, t) = f(p, t) \), i.e. transitions in conflict have identical sets of pre-places and the same flow relation. Sometimes termed **Equal Conflict (EC)**.

- A Petri net is called **Asymmetric Simple (AS)** if \(\forall p, q \in P : p^\cdot \cap q^\cdot = \emptyset \lor p^\cdot \subseteq q^\cdot \lor q^\cdot \subseteq p^\cdot \).
Invariant analysis

The incidence matrix of a Petri net, C, records all the structural information about the net except places which are both input and output places to the same transition (sometimes termed read arcs).
Invariant analysis

The incidence matrix of a Petri net, C, records all the structural information about the net except places which are both input and output places to the same transition (sometimes termed read arcs).

Therefore it is not surprising that we can use linear algebra and properties of the incidence matrix to deduce structural properties of the net, and consequently find out more about its possible behaviour.
Invariant analysis

The incidence matrix of a Petri net, C, records all the structural information about the net except places which are both input and output places to the same transition (sometimes termed read arcs).

Therefore it is not surprising that we can use linear algebra and properties of the incidence matrix to deduce structural properties of the net, and consequently find out more about its possible behaviour.

Recall that these will be properties that hold for all possible markings of the net.
Invariant analysis

The incidence matrix of a Petri net, C, records all the structural information about the net except places which are both input and output places to the same transition (sometimes termed read arcs).

Therefore it is not surprising that we can use linear algebra and properties of the incidence matrix to deduce structural properties of the net, and consequently find out more about its possible behaviour.

Recall that these will be properties that hold for all possible markings of the net.

While they are usually defined in terms of the incidence matrix, P-invariants and T-invariants do also have an intuitive meaning at the net level, and an interpretation in terms of the biology.
Place invariants

A place vector is a vector \(x : P \rightarrow \mathbb{Z} \), indexed by \(P \).
A place vector is a vector $x : P \rightarrow \mathbb{Z}$, indexed by P.

A place vector is called a P-invariant if it is a nontrivial nonnegative integer solution of the linear equation system $x \cdot C = 0$.
Place invariants

A **place vector** is a vector $x : P \rightarrow \mathbb{Z}$, indexed by P.

A place vector is called a **P-invariant** if it is a nontrivial nonnegative integer solution of the linear equation system $x \cdot C = 0$.

A net is **covered by P-invariants** if every place belongs to a P-invariant.
A transition vector is a vector $y : T \to \mathbb{Z}$, indexed by T.
Transition invariants

A transition vector is a vector $y : T \rightarrow \mathbb{Z}$, indexed by T.

A transition vector is called a T-invariant if it is a nontrivial nonnegative integer solution of the linear equation system $C \cdot y = 0$.
A transition vector is a vector \(y : T \rightarrow \mathbb{Z} \), indexed by \(T \).

A transition vector is called a \textbf{T-invariant} if it is a nontrivial nonnegative integer solution of the linear equation system \(C \cdot y = 0 \).

A net is \textbf{covered by T-invariants} if every transition belongs to a \(T \)-invariant.
Minimal invariants

The set of nodes corresponding to an invariant’s nonzero entries are called the support of this invariant x, written $\text{supp}(x)$.
Minimal invariants

The set of nodes corresponding to an invariant’s nonzero entries are called the support of this invariant x, written $\text{supp}(x)$.

An invariant w is called minimal if $\nexists z : \text{supp}(z) \subset \text{supp}(w)$, i.e. its support does not contain the support of any other invariant z, and the greatest common divisor of all nonzero entries of w is 1.
Consequences of invariants

If a Petri net is covered by P-invariants then it is structurally bounded.
Consequences of invariants

If a Petri net is covered by P-invariants then it is structurally bounded.

If a bounded Petri net is live, then it must be covered by T-invariants.
Consequences of invariants

If a Petri net is covered by P-invariants then it is structurally bounded.

If a bounded Petri net is live, then it must be covered by T-invariants.

Note the different directions of implication.
Consequences of invariants

If a Petri net is covered by P-invariants then it is structurally bounded.

If a bounded Petri net is live, then it must be covered by T-invariants.

Note the different directions of implication.

Covering with P-invariants is a sufficient condition for structural boundedness, whereas covering with T-invariants is a necessary condition for liveness of a bounded net.
Biological interpretations

A P-invariant can be regarded as a token conservation component.
Biological interpretations

A P-invariant can be regarded as a token conservation component.

Since in the biological interpretation the token represent molecules (or levels of concentration) this means that a P-invariant represents conservation of mass.
A P-invariant can be regarded as a token conservation component.

Since in the biological interpretation the token represent molecules (or levels of concentration) this means that a P-invariant represents conservation of mass.

This interpretation makes P-invariants valuable as a model validation tool, as a biologist will generally have a good idea of which species in a model should be conserved through reactions and modifications and calculating P-invariants allows this to be checked.
Biological interpretations

The interpretation of T-invariants is not so straightforward and it is important to remember that these are *mathematical constructions*.
Biological interpretations

The interpretation of T-invariants is not so straightforward and it is important to remember that these are *mathematical constructions*.

A T-invariant identifies a *set of transition firings* which can return the net to the same marking.
Biological interpretations

The interpretation of T-invariants is not so straightforward and it is important to remember that these are mathematical constructions.

A T-invariant identifies a set of transition firings which can return the net to the same marking.

For a particular marking this set of firings may or may not be feasible.
Biological interpretations

The interpretation of T-invariants is not so straightforward and it is important to remember that these are mathematical constructions.

A T-invariant identifies a set of transition firings which can return the net to the same marking.

For a particular marking this set of firings may or may not be feasible.

In the biological interpretation a T-invariant identifies a set of reactions which may return a process to a given state and understanding this may provide insight into the behaviour.
Biological interpretations

The interpretation of T-invariants is not so straightforward and it is important to remember that these are mathematical constructions.

A T-invariant identifies a set of transition firings which can return the net to the same marking.

For a particular marking this set of firings may or may not be feasible.

In the biological interpretation a T-invariant identifies a set of reactions which may return a process to a given state and understanding this may provide insight into the behaviour.

Moreover, if the system has a steady state behaviour (e.g. a metabolic network) then the T-invariant gives relative occurrence rates for the reactions involved.
Consider the following set of biochemical reactions:

\[r_1 : 2A \xrightarrow{E} 2B \]
\[r_2 : A \rightarrow B \]
\[r_3 : B \rightarrow A \]
Consider the following set of biochemical reactions:

\[r_1 : 2A \xrightarrow{E} 2B \]
\[r_2 : A \rightarrow B \]
\[r_3 : B \rightarrow A \]
Small Example: incidence matrix

\[E = \begin{array}{c}
\downarrow \\
A \quad \bullet \\
\uparrow \\
B
\end{array} \]

\[r_1 \]

\[r_2 \]

\[r_3 \]

\[Pre = \begin{pmatrix}
2 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{pmatrix} \]

\[Post = \begin{pmatrix}
0 & 0 & 1 \\
2 & 1 & 0 \\
1 & 0 & 0
\end{pmatrix} \]

\[C = \begin{pmatrix}
-2 & -1 & 1 \\
2 & 1 & -1 \\
0 & 0 & 0
\end{pmatrix} \]
Small Example: P-invariants

\[x_1 = (1, 1, 0) = (A, B) \]

\[x_2 = (0, 0, 1) = (E) \]

\[\mathcal{C} = \begin{pmatrix} -2 & -1 & 1 \\ 2 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix} \]
Small Example: T-invariants

\[y_1 = (1, 0, 2) = (r_1, 2 \cdot r_3) \]

\[y_2 = (0, 1, 1) = (r_2, r_3) \]

\[C = \begin{pmatrix} -2 & -1 & 1 \\ 2 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix} \]
M. Heiner, D. Gilbert and R. Donaldson
Petri Nets for Systems and Synthetic Biology

http://genome.ib.sci.yamaguchi-u.ac.jp/~pnp