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Petri nets are a discrete event simulation approach developed for system representation,
in particular for their concurrency and synchronization properties. Various extensions to
the original theory of Petri nets have been used for modeling molecular biology systems
and metabolic networks. These extensions are stochastic, colored, hybrid and functional.
This paper carries out an initial review of the various modeling approaches based on
Petri net found in the literature, and of the biological systems that have been success-
fully modeled with these approaches. Moreover, the modeling goals and possibilities of
qualitative analysis and system simulation of each approach are discussed.
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1. Introduction

The completion of the human genome sequencing project, the rapid development
of bioinformatics and the phenomenal accumulation of biological data have made
the understanding biological processes and cellular functions a growing research
interest. This post-genomic wave is called “systems biology”, and with it has arisen
a greater interest in the modeling and simulation of biological systems.1 Many
formalisms from the fields of biology, mathematics and the computer sciences are
used to integrate, represent and analyze the vast amount of biological data.

A traditional representation uses ordinary differential equations (ODEs) to
model biological systems. It is widely used and many tools are based on this
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approach.2 Appropriate for representing and simulating the kinetic equations of
biochemical reactions, ODEs are mostly used to study the dynamics of a metabolic
process. The software packages Gepasi3 and E-CELL4 have been developed to sup-
port modeling with this analytical representation. Boolean logic and state machines
are also used for modeling biological systems. Even though boolean models are
simple representations, they can be used to express characteristics of biological
phenomena.5 For example, a logic model of the Endo16 gene of Strongylocentrotus
purpuratus predicted an internal cis-regulatory switch.6 Stochastic models are
another approach used in molecular biology modeling. Processes like genetic expres-
sion and regulation, signal transduction and cellular reproduction exhibit a stochas-
tic behavior.7 A stochastic kinetic analysis of the phage λ lysis-lysogeny decision
circuit resulted in statistics on regulatory outcomes.8 Many literature reviews pre-
senting these modeling approaches and others have been published, and some books
introducing the subject are available.9–12

Discrete event simulation is another interesting approach for molecular biology
modeling. Categorized in this last family of approaches, Petri nets can serve to
model, analyze and simulate biological processes. The use of Petri nets in biology
was suggested for the first time by Reddy et al., who qualitatively analyzed
metabolic pathways.13 Since then, several types of biological processes have been
modeled and simulated with Petri nets, mainly molecular biology systems, but also
in epidemic and ecologic modeling.14–16 Peleg et al. assessed Petri nets and ten other
types of model from the fields of software engineering, business and biology to eval-
uate their appropriateness for representing and simulating biological processes.17

Their conclusions were that the combination of two of the assessed types of model,
workflow and Petri net models, was the most suitable notation. Aptness of Petri
nets for biological research is also demonstrated in recent articles.18–23 Furthermore,
software tools for molecular biology modeling and simulation based on a Petri net
architecture are being developed.24–26

Despite the various works with different Petri net approaches, Chen et al.
emphasized that “they lack unity in their concepts, notations and terminologies.
This makes it very difficult for new scientists to understand the potential appli-
cations of Petri nets due to the various interpretations presented by different
authors.”27 The aim of this paper is to analyze the modeling of biological sys-
tem with the various types of Petri nets. For the complete methodology underlying
each approach, the referenced articles should be consulted in their entirety. In the
next section, elements from Petri net theory and the earliest attempts at using
them for modeling are introduced. Then, the modeling and simulation of biolog-
ical process with stochastic, colored and hybrid Petri nets are presented and the
characteristics of each approach are discussed. The glycolysis pathway, modeled
with three different types of Petri net, is illustrated. The formal definition of each
Petri net type and the definitions of some of their properties are included with
each presentation. Petri nets have also been used to analyze metabolic pathway



November 5, 2004 11:6 WSPC/185-JBCB 00076

Modeling and Simulation of Molecular Biology Systems Using Petri Nets 621

databases.28 In this kind of application, Petri nets are useful for comparing data
from various sources, but this is not within the scope of this paper.

2. Elements of Petri Net Theory and the Earliest Attempts
at Biological Modeling

Petri nets were introduced at the beginning of the sixties by Prof. Carl A. Petri as
a mathematical modeling tool to express system properties like concurrency, inde-
terminism, communication and synchronization. The basic Petri net is also called
a place/transition net. It is founded on a mathematical formalism of the oriented
graph. Petri nets and their changes of state can respectively be transposed into
matrices and matricial operations. Petri nets are a network where tokens located in
places will initiate transitions according to given conditions that will result in the
generation of new tokens in the output places. Petri nets and their various elements
have a standardized graphical representation as shown in Fig. 1: places p1, p2 and p3

are circles, transition t1 is a full rectangle, individual tokens are full dots and arcs
are drawn as arrows where a positive integer indicates their weight. The number of
tokens in each place is usually associated with variables, which are m1, m2 and m3

in the figure. Places can contain tokens which move from place to place via transi-
tions. Tokens are not distinguishable from one another. An arc always binds a place
to a transition. Definition 1 is the formal definition of a Petri net.

Definition 1. The Petri net N is defined by the n-tuple (P , T , Pre, Post, M)
where:

P = {p1, p2, . . . , pu}, a finite set of places where u > 0;
T = {t1, t2, . . . , tv}, a finite set of transitions where v > 0;
P ∩ T = �, meaning that the sets P and T are disjointed;

Fig. 1. Places p1 and p2 are input places and place p3 is an output place of the transition t1. The
token contents of places p1, p2 and p3 are m1, m2 and m3 respectively. The weight constants 1
and 3 on the arcs going out of places p1 et p2 and the value 1.0 attached to transition t1 mean
that t1 can fire if m1 ≥ 1 and m2 ≥ 3, and that the firing delay is 1.0 time unit (in the case of
a timed net). When t1 is fired, one token is removed from p1, three tokens are removed from p2

and two tokens are added to p3.
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Pre = P × T → N, is the input incidence mapping (weights of the arcs going
from places to transitions) and where N is the set of natural numbers;

Post = P × T → N, is the output incidence mapping (weights of the arcs going
from transitions to places);

M = P → N, is the marking of the net which is a vector of u components
(m1, m2, . . . , mu), where mi is the number of tokens contained in the place pi.
M0 is the initial marking.

The marking M of the network gives the state of the Petri net. It is a vec-
tor indicating the number of tokens M(p) at each place p. When a transition is
fired, there is a change in the state of the net, and consequently a modification of
the marking. A firing can occur when all the input places of a transition contain
the minimal number of tokens defined by the Pre relation. In other words, when the
number of tokens of all input places is greater than or equal to the weight of the
arc linking them to a transition, this transition can fire. Then, the tokens are con-
sumed by the transition and withdrawn from the input places, just as other tokens
are created and added to the output places of the same transition. The number
of tokens created is specified by the Post relation. Figure 1 illustrates how a Petri
net transition works. For a more formal and complete coverage of traditional Petri
nets and an analysis of their structural properties, consult Reisig’s introduction on
the subject.29 Many extensions have been added to the initial model, the purpose
of which is to transform models into a more compact form, to elevate the abstrac-
tion level or to give Petri nets new capabilities. Some of them have been used for
modeling and simulation in biology, and these will be briefly presented in the fol-
lowing sections. The similarities between modeling in molecular biology and Petri
net theory are thoroughly discussed.23

Traditional Petri nets were originally suggested for biological pathway model-
ing by Reddy et al., and the bridging of molecular species and chemical reactions
with Petri net places and transitions was achieved for the first time by them.13

The association of places with molecular species and transitions with chemical
reactions is used for all types of Petri net model presented in this review. However,
special situations necessitate more than one place for one species, for example,
when distinguishing between an enzyme in an activated or a deactivated state, or a
metabolite in various sites of the cell. The number of tokens indicates the quantity
of substance and it corresponds to a predefined measure unit according to the scale
of the model, such as the exact number of molecules, mole, millimole, etc. Reddy
demonstrated that the Petri net approach was an appropriate tool for a preliminary
qualitative analysis of biopathways. Behavioral and structural properties of Petri
nets, like liveness, boundedness and invariants were used to identify some charac-
teristics of models (see Definitions 2 to 6). This analysis approach was applied to
the erythrocyte pentose phosphate pathway and to the main glycolytic pathway
(see Fig. 2 for model and Tables 1 and 2 for symbols definition).30 The analysis
of these pathways showed boundaries for certain molecular species, conservation
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Fig. 2. The Petri net model of the combined metabolism of the glycolytic and pentose phosphate
pathways of an erythrocyte cell transforming glucose into lactate (pentose phosphate pathway is
abstracted by transition t13). Places labeled with an asterisk are, in fact, one place only, which
has been divided for reasons of clarity. ATP, for example, has only one place. See Tables 1 and 2
for elements definition. Model inspired after Fig. 8 from Reddy et al .30

Table 1. Mapping between metabolites in the pathway and places in the Petri net
models of Figs. 2, 3 and 6.

Metabolite/Compound

Marking Variable Associated
Abbreviation to Concentration Name

Gluc m1 Glucose
G6P m2 Glucose-6-phosphate
F6P m3 Fructose-6-phosphate
FBP m4 Fructose biphosphate
DHAP m5 Dihydroxyacetone phosphate
GAP m6 Glyceraldehyde-3-phosphate
1,3-BPG m7 1,3-Biphosphoglycerate
3PG m8 3-Phosphoglycerate
2PG m9 2-Phosphoglycerate
PEP m10 Phosphoenolpyruvate
Pyr m11 Pyruvate
Lac m12 Lactate
ATP m13 Adenosine triphosphate
ADP m14 Adenosine diphosphate
NAD+ m15 Nicotinamide adenine dinucleotide,

oxidized form
NADH m16 Nicotinamide adenine dinucleotide,

reduced form
Pi m17 Orthophosphate, ionic form

properties, regenerative reactions and situations leading to a deadlocking of the
system.

Definition 2. Reachability. A marking M is reachable if it can be reached from
the current marking Mi in a finite firing sequence.
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Table 2. Mapping between reactions in the pathway and
transitions in the Petri net models of Figs. 2, 3 and 6.

Index Enzyme/Reaction

t1 Hexokinase
t2 Phosphoglucose isomerase (forward reaction)
t3 Phosphofructokinase
t4 Aldolase
t5 Triosephosphate isomerase (forward reaction)
t6 Triosephosphate isomerase (reverse reaction)
t7 Glyceraldehyde-3-phosphate dehydrogenase
t8 Phosphoglycerate kinase
t9 Phosphoglycerate mutase
t10 Enolase
t11 Pyruvate kinase
t12 Lactate dehydrogenase
t13 Pentose phosphate pathway abstraction
t14 Phosphoglucose isomerase (reverse reaction)

Note: The reactions associated with transitions t12 to
t43 of the model of Fig. 6 are identified in its caption.

Definition 3. Boundedness. A place is bounded with bound k, if the token count
does not exceed k for any reachable marking M of the net. A Petri net is k-bounded
if each place is k-bounded.

Definition 4. Liveness. A transition is potentially firable if there exists a
sequence of transition firings leading to a marking in which the transition is enabled.
A transition is live if it is potentially firable for all reachable marking. A transition
is dead if it is not potentially firable at the marking M ; so if the Petri net enters
marking M , the dead transition cannot fire any more.

Definition 5. S-invariant. If C is the incidence matrix corresponding to the
result of Post — Pre, then S-invariants are the solutions to the equation Cy = 0.
The non-zero entries in the vector y constitute the set of places whose total token
count does not change with any firing sequence. It is a conservation rule.

Definition 6. T-invariant. If C is the incidence matrix corresponding to the
result of Post — Pre, then T-invariants are the solutions to the equation CT x = 0,
x ≥ 0. The solution vector x is the set of transitions that have to fire, from some
marking M , to return the Petri net to the same marking M . It is a regenerative rule.

Hofestädt modified Petri net formalism in order to adapt it to metabolic network
modeling.31 The objective was to model metabolic processes in a natural way by
developing a new formal graphical representation based on Petri nets. Places and
transitions were specialized: places were either metabolite or enzyme, and tran-
sitions were either biosynthesis, cellular communication or protein biosynthesis.
Unfortunately, the advantage given by this increase in modeling power is of no
use for solving the simulation issues that arose at that moment. Later work of
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Hofestädt and Thelen suggested a solution to this problem: the application of a
Petri net extension corresponding more to the biological context.32 This extension
is the self-modified Petri net, first defined by Valk and now known as the functional
Petri net (see Definition 7).33 The main feature of this augmented formalism is
the possibility of assigning to Petri net arcs an equation using marking variables
instead of a positive integer. The result is that network marking dynamically mod-
ifies the weight of the arcs. In the case of a biochemical process model, this feature
is particularly useful for simulating the influence of the variation in concentration
on the kinetic rate of biocatalytic reactions. In other words, concentrations, rep-
resented by the number of tokens in the net, are variables for the functions that
define the weight of the arcs. Thus, the reaction rate of a transition is modified
according to the concentration of the various substances involved. Hofestädt and
Thelen suggested that quantitative simulations with self-modified Petri nets would
help detect metabolic bottlenecks in some defective processes.

Definition 7. The functional Petri net N is defined by the n-tuple (P , T , Pre,
Post, V , M) where:

(P , T , Pre, Post, M) is a Petri net as described in Definition 1;
V = {ga(m1, . . . , mu), a ∈ Pre∪Post | g : p1 × · · · × pu → N}, a set of functions

assigned to arcs of the net using its marking (m1, . . . , mu) as parameters.

3. Stochastic Petri Nets

The random nature of molecular interactions at low concentration has been
observed in several experiments. However, the Kolmogorov equations of the stochas-
tic model corresponding to a biological system rapidly become impossible to solve
analytically. Goss and Peccoud used stochastic Petri nets (SPN)34 as a tool for
biological modeling of stochastic models.7 They implied that the Petri net formal-
ism and its modeling power can reduce model implementation delays. With their
model, they successfully analyzed the stabilizing effect of the ROM protein on the
genetic network controlling the replication of ColEl plasmid replication.35 More
recently, the response of transcription factor σ32 to a heat shock and the intra-
cellular kinetics of a viral invasion have been studied through simulation of SPN
models.36,37

In the SPN model of a system composed of molecular interactions, each place
corresponds to a particular molecular species. Tokens represent molecules and tran-
sitions between places are chemical reactions involving reactants (input places) and
products (output places). At any time, the marking of the system indicates the
number of molecules of each species involved. The values of arcs originating from
input places and ending at output places are the equivalent of stochiometric coef-
ficients. As in traditional place/transition nets, if the number of tokens at input
places is higher than the weight of all the input arcs of a transition, this transi-
tion can fire. In molecular terms, the firing of a transition means that a chemical
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reaction is occurring. The particularity of SPN is that the firing of a transition
is not instantaneous. There is a delay following a probabilistic distribution, thus
the delay is a random variable (see Definition 8). In SPN biological models, this
delay is interpreted as the reaction rate, and it is given by the weight function of
the corresponding transition. The delay mean time is obtained by the transition
reaction rate, which is a function of a stochastic rate constant and the quantity
of each molecular species involved as a reactant or a catalyst. This constant takes
into account volume, temperature, pH and other environmental factors. It is also
related to the deterministic rate of the reaction. Several types of SPN exist, but,
in the type discussed here, the same type that is used by Goss and Peccoud for
modeling a biological process, the weight function will take into account the mark-
ing of the net in order to correctly calculate reaction rates. When the number of
molecules is sufficiently large, the stochastic constant of the reaction rate is equal
to the deterministic rate.

Definition 8. The stochastic Petri net N is defined by the n-tuple (P, T, Pre,

Post, F, λ, M) where:
(P, T, Pre, Post, M) is a Petri net as described in Definition 1;
F = {Ft, t ∈ T | Ft: [0,∞) → [0, 1]}, a set of probability density functions for

the net firing delays. Their average is 1 and they are independent of the marking;
λ = {λt, t ∈ T | λt: N → R

+}, a set of firing rates, which are function of the
marking (a set of natural integers) and where each element is associated with a
transition t. This rate, a positive real number from the set R

+, is used to calculate
the probability density function for the transition t.

Stochastic models are applicable when molecules are considered as a discrete
amount. Then, a deterministic change in concentrations, quantified by reaction
kinetic rates of the incessant flux of transformation of reactants in products,
becomes a random event where reactions are ruled by probabilistic laws. SPN can
help build these models from their reaction equations and simulate them. It conse-
quently becomes possible to study a system with the simulation results.

The software Möbius (or UltraSAN in its earlier version) has been used for all
the systems modeled with SPN mentioned in this section.38 This SPN simulation
tool — not exclusive to biology — also has a model numerical resolution option.
With this tool, the molecular species distribution can be studied and the occurrence
probability of certain events can be calculated. For example, in the analysis of the
stabilizing effect of the ROM protein on a genetic network, the probability that a
cell will divide without having replicated its plasmid was estimated.

4. Colored Petri Nets

The differentiation between categories of tokens when modeling large systems with
Petri nets was considered in order to reduce the size of models. Thus, Petri nets
were enhanced with this new feature by adding colors. The resulting high-level
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net, colored Petri net (CPN), is composed of tokens identified by a color (see
Definition 9). With this augmentation of the formalism, it is possible to represent,
in the same model, different dynamic behaviors modeled by different token colors.39

Two research teams modeled and simulated biological processes with CPN. In all
projects, Design/CPN software, consisting of a set of edition and simulation tools
for CPN, has been used.40 However, each team had a different modeling goal and
the conceptual meaning of the token colors was not the same.

Definition 9. The colored Petri net N is defined by the n-tuple (P, T, Pre, Post,

C, M) where:
(P, T, Pre, Post, M) is a Petri net as described in Definition 1 and the tokens

of M are identified by a color;
C = {C1, C2, . . .}, a set of colors. The incidence mappings Pre and Post are

functions of the token colors.

Genrich et al. modeled an enzymatic reaction with a colored Petri net
transition.41 This transition is connected to places representing substrates like
re-actant, product, enzyme and inhibitor. In this model, tokens are identified
by two colors, one associated with the substance name and the other with
its concentration. The CPN used for this modeling also has functional fea-
tures because an execution model is called upon, after every firing of the
transition, to calculate and modify substrate concentration. These reaction
rate calculations are performed according to the Michaelis–Menten biochemi-
cal equation, augmented by an additional term for the free reaction energy.
The specific constants associated with each enzyme needed for these calcu-
lations are extracted from the BRENDA biochemical database.42 This tran-
sition is, in fact, a sub-model integrated into the glycolysis and citric acid
metabolic models. A chain of enzymatic reactions constitutes the metabolic
network to be quantitatively simulated. Another interesting part of the Gen-
rich et al. paper is to propose rules for automatic pathway identification from
databases, after which the pathways are modeled as Petri nets for simulation
purposes.

Although the CPN was used in their work to model a metabolic system, Heiner,
Koch and Voss proceeded differently to accomplish a qualitative analysis of steady
states in pathways.43,22 The objectives of this approach are compatible with the
work of Reddy, but the modeling power and the communication capacity of the
model are enhanced by the addition of colors. They refined the initial Reddy model
of glycolysis and pentose phosphate pathways in an erythrocyte cell by the inclusion
of reversible reactions and flux modes (see Fig. 3 for model). Unlike to Genrich, the
intention in using colors was to separate branches of a metabolic pathway and to
differentiate molecules of the same species (thus, tokens of the same place) according
to their origin and destination reaction. The analysis of the invariants of the CPN
model found a preservation law for the amounts of all metabolites in the system
and confirmed regenerative reactions and their partial order.
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Fig. 3. Colored Petri net model of the glycolysis and pentose phosphate pathways of an erythrocyte
cell. The colors used in this model are C, D and H′. The variable X means any color. Three flux
modes are represented in the original model. The first mode is glycolysis, associated with the
guard [X <> C] of t13, which means that tokens of color C cannot travel through the pentose
phosphate pathway. The two other modes are combined in the pentose phosphate pathway (all
details are not shown), one of them is associated with the guard [X <> H′]. Model inspired after
Fig. 3 from Heiner et al .43

5. Hybrid Petri Nets and Supplementary Extensions

An intuitive way for representing a molecular species concentration is with tokens
of a continuous nature instead of a discrete nature. The hybrid Petri net (HPN)
offers this possibility with a new continuous type of places and transitions (see
Definition 5).44 In HPN, discrete places and transitions, with their number of tokens
represented by integers and their possible firing delay, are unchanged. But, in the
new continuous places, tokens are replaced by a non-negative real number called
a mark, and a variable called speed is assigned to the new continuous transitions.
The continuous transition speed is a rate of quantity transformation from input
places to output places. Thus, the modeling of metabolic reactions and genetic
regulation, usually performed with ODEs, can now be accomplished with hybrid
Petri nets. Figure 4 explains how a continuous HPN transition operates, and Fig. 5
shows the HPN elements graphically. Matsuno et al.45 and Chen and Hofestädt18

have demonstrated the feasibility of modeling biological systems with HPN.

Definition 10. The hybrid Petri net N is defined by the n-tuple (P, T, Pre,

Post, h, M) where:
(P, T, Pre, Post, M) is a Petri net as described in Definition 1, where M is

a combination of integers for the number of tokens in discrete places and of real
numbers for the mark of continuous places;

h: P ∪ T → {D, C}, called a hybrid function, indicates for each place and
transition, if it is discrete (h(pi) = D and h(tj) = D) or continuous (h(pk) = C

and h(t1) = C);
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Fig. 4. Places p1, p2 and p3 are continuous places having content m1, m2 and m3 respectively.
The function m1 − m2/2 is assigned to the continuous transition t1 as its firing speed, t1 can be
fired if m1 > 0 and m2 > 0. The contents of p1 and p2 are consumed with the speed m1 − m2/2,
and the content of p3 increases with the same speed when the transition t1 is fired.

Fig. 5. Graphical representations of the elements of hybrid Petri nets.

A delay dt is assigned to all discrete transitions and a speed vt is assigned to all
continuous transitions.

Matsuno et al. modeled the genetic switching mechanism of the λ phage with
HPN45 by using the Visual Object Net++ tool.46 Part of their work demonstrated
that the HPN approach constitutes a more intuitive modeling tool than the ODE,
because of its graphical notation as much as for its power as a simulation tool.
The variations in expressed protein concentration, resulting from the simulations,
correspond to the biological data on that system.

To be able to adapt the HPN modeling approach to biological processes
more accurately, functional Petri net properties have been added to create a
new extension: the hybrid functional Petri net (HFPN).24 This twinning allows
a dynamic adaptation during the execution of the Petri net like that in the Genrich
et al. work.41 The attribution of a value to the net arcs makes it possible to model
biochemical reaction rate equations like the Michaelis–Menten equation. Moreover,
two new arc types, different from “normal” arcs, are included in the HFPN to model
biological aspects. Firstly, inhibitory arcs model the inhibition function of molecules
in some reactions. An inhibitory arc with weight r enables the transition to fire
only if the content of the place at the source of the arc is less than or equal to r.
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Secondly, test arcs verify the presence of content at its source place when the related
transition fires without consuming anything. Unlike inhibitory arcs, some content is
necessary in a place connected with a test arc to a transition about to fire. With the
inhibitory arc, the repressing function of an operator on gene transcription can be
represented. With the test arc, the action of an enzyme in a metabolic reaction,
where the enzyme is required but not consumed by the reaction, can be modeled.
From the HFPN architecture, the Matsuno team has developed biosimulation soft-
ware for biologists called Genomic Object Net (GON).25,26,47

Many biological processes and systems have already been modeled and simulated
using HFPN. Some processes are related to genetic regulation: the λ phage genetic
control mechanism,45 circadian rhythms in Drosophila19 and the control mecha-
nism of the lac operon of E. coli.20 Others are metabolic networks: the glycolytic
pathway32 (see Fig. 6) and the urea cycle.18 The transduction signal system of
apoptosis induced by the Fas ligand was also modeled with HFPN.19 The pattern
formation by a multicellular system due to interactions between cells with Delta-
Notch signaling was simulated.48 In this last experiment, a cellular boundary forma-
tion in Drosophila and other abnormal patterns could be analyzed with simulation
results, corroborating observations from laboratory experiments.

The scientists who originated the HFPN architecture are continuing its elabo-
ration by planning the incorporation of extensions to enhance its modeling power
and simulation precision.19 To achieve this, more complex information like the

Fig. 6. Hybrid functional Petri net model of the glycolytic pathway and lac operon
gene regulatory mechanism. Transitions t12–t23 are the natural degradation of substrates
and their firing speed is given by the formula mX/10000 where X = 1, 2, . . . , 10, 12, 13.
Production rate of enzymes (t24, t26, . . . , t42) has a speed set to 1 and their degradation rate
(t25, t27, . . . , t43) has a speed given by the formula (enzyme concentration)/10. The reactions in
the main pathway (t1, t2, . . . , t11) have the Michaelis–Menton equation for speed: VmaxmX

Km+mX
where

X = 1, 2, . . . , 10, Vmax is the maximum reaction speed and Km is a Michaelis constant. Model
inspired after Fig. 9 of Ref. 20.
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localization of biological objects or intercellular interactions at the molecular level
must be incorporated into the models. One of these extensions makes it possible for
a Petri net place to have various data types, like integers or real numbers, vectors
and strings. Also, a conversion module implementing the procedure will be capable
of converting biological models represented with ODEs in the E-CELL software
format to HFPN models.49

6. Discussion

To make the modeling power of Petri nets richer and to adapt them to diverse
problems, several extensions have been added to Professor Petri’s theory. However,
enhancements given by the extensions presented in this review do not offer the
same modeling and simulation possibilities. Colored Petri nets (CPN) were created
to diminish model size and so allow the models to manage more information without
rendering its structure too complex. Stochastic Petri nets (SPN) are a specialized
member of the timed Petri net family where firing delays are random variables.
The need to represent discrete and continuous quantities in the same model moti-
vated the development of hybrid Petri nets. Finally, the dynamic modification of arc
weight through net marking is possible with functional Petri nets. Other extensions
were developed to solve other problems. With the variety of Petri net types avail-
able, the context of use of the various extensions for biological process modeling
and simulation can be called into question.

To analyze each approach and its biological modeling possibilities, it is pertinent
to recall the compromise discussed by Reddy et al. between the modeling and
simulation power and the decision-making power of Petri net.30 According to this
compromise, the addition of modeling power to a Petri net with extensions will
decrease its analytic capabilities. Indeed, augmenting modeling power amplifies the
complexity of the determination of some properties, even to the point of indecision.
For example, inhibitor arcs expand the richness of concepts expressed by a model,
but greatly complicate its mathematical analysis. Thus, it is important to choose
the Petri net extension that will be used for modeling judiciously, in accordance
with the objectives to be attained.

In the literature, there are two categories of goals of Petri net biological
modeling: qualitative and quantitative analysis. One can either learn more about
the properties of the system under study with a qualitative approach or study the
system dynamics with simulation. When one wants to analyze a complex system of
biochemical reactions, for example by identifying invariants, the presence of bound-
aries or the liveness in the system model, the Petri net extension chosen must enable
those properties to be determined. By contrast, one may want to study the model’s
behavior by simulating it and thus obtain concentration graphs, and/or observe
the achievability of a steady state, without any concern for property decidability.
In that case, modeling power is more important. Thus, it is possible to identify
modeling goals for each Petri net extension (see Table 3).
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Table 3. Biological modeling goals of Petri net extensions.

Petri Net Available
Extension Modeling Goal Analysis Type Process Type Software References

Colored Analysis of Qualitative Metabolic Design/CPN 22, 42, 44
biological
system
properties

Stochastic Simulation of Quantitative Any biological Möbius 7, 36, 37, 38
biological stochastic
systems process
with low
concentrations

Hybrid Simulation of Quantitative Metabolic, Genomic 18, 19, 24, 25,
functional biological Regulatory Object Net 26, 46, 49

systems networks, Signal
transduction

As was the case for the earliest modeling attempts with Petri net by Reddy et al.,
where a qualitative analysis was performed using place/transition nets, CPN can
give some insights into a biological system.43 Thus, a rigorous preliminary analysis
can guide the elaboration of experiments when quantitative data is missing. Token
color does not reduce the decidability power of Petri nets because it is always
possible to convert each CPN mode into a traditional net. One advantage of using
CPN is the possibility of discriminating metabolites on the basis of their chain of
reactions in a model. However, the size of the model must not exceed a certain limit
because if the model complexity is too great, the state space will explode and its
complete exploration and analysis will be impossible. Consequently, the analysis of
complex systems is still a difficult task. Until now, this method has only been used
on classic metabolic systems (like the Krebs cycle or glycolysis) to demonstrate
its potential, but has also been incorporated in algorithms to find new metabolic
pathways between two compounds.28 Little information is needed to perform a
qualitative analysis: the stoichiometry and the reversibility of the system reactions.

Hybrid and stochastic net attributes are intended for simulation, and token
activity in the model is the main aspect considered in reproducing the behavior
of a system. Wanting to model a system in order to quantitatively simulate it is
in accordance with the modeling goals of Hofestädt and Thelen.32 The criterion of
choice between the stochastic and the hybrid extensions is the nature of the system
to be modeled. If, for example, a model deals with a small number of molecules,
such that their individuality has to be taken into account, its stochastic nature
has to be represented and SPN are appropriate. By contrast, for models where the
number of molecules is high enough to be represented in a satisfying way as a con-
tinuous quantity or as a concentration, HPN is the appropriate modeling approach.
It is interesting to note, however, that, if the discrete transition delay in HPN is
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modified to become a random variable, then it is possible to fuse HPN with SPN.
Matsuno et al. mentioned that their architecture could be easily modified to allow
this blending.45 It is also important to recall that the twinning of the functional and
hybrid extensions, as in the HFPN, facilitates the modeling of metabolic reactions.

To accomplish a quantitative analysis of a biological system, kinetic parameters
like reaction rates have to be available. This kind of analysis provides means to test
new hypothesis and to evaluate the impact of the variation of conditions in which a
system evolves. It has proven its usefulness in several biology research projects.
As mentioned above, the stabilizing effect of the ROM protein on the genetic
network controlling the replication of ColE1 plasmid replication was successfully
analyzed with a SPN model35 and a cellular boundary formation in Drosophila
could be analyzed with simulation results of a HFPN model, corroborating obser-
vations from laboratory experiments.48

The work of Genrich et al.41 is an exception to the classification shown in
Table 3. In their model, the color of the tokens is associated with the concentration
of the molecular species in order to make a quantitative analysis. This demonstrates
that the classification is not absolute. However, in addition to the colored extension,
the Petri net type used in that model also includes an executable component which
is called upon at every transition firing to calculate the concentration variations
according to the Michaelis–Menten equation. Despite the validity of this approach,
it is less intuitive and harder to implement than an approach using HFPN.

Using the Petri net for biological modeling offers many advantages. First, two
Petri net properties, identified by Reddy et al., are pertinent to the modeling of
biochemical systems: extendibility and abstraction.30 These two features are related
to model hierarchization. Extendibility is the property of adding new sections to a
net — for example, when supplementary information becomes available to complete
a model, or when one wants to combine two complementary models — without
having to considerably modify the structure of the resulting model. Abstraction
is the property of neglecting the modeling of some aspects which do not concern
the system under study by representing the sub-model by a transition. An example
of abstraction is the transition t13 of the Figs. 2 and 3 representing the pentose
phosphate pathway.

Second, many theoretical elements of Petri nets with a mathematical basis are
useful as a preliminary analysis tool for biological pathways. Zevedei–Oancea and
Schuster thoroughly discuss this.23 Oliveira et al. developed and defined rigorously
a computational approach based on Petri nets to identify interesting sub-circuit
pathways in biochemical networks and applied their methodology to the Krebs
cycle.50,21 Petri net invariants can be associated with flux modes and conservation
relations. Furthermore, special sets of places known as siphons and traps can be
identified. The places constituting a siphon stay empty once they have no tokens.
At the other extreme, places forming a trap cannot lose one token when they
reach a certain marking. Traps and siphons are of interest in biochemical modeling
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because these notions can be associated with the storage and consumption of system
resources. Finally, the liveness of a net or its deadlocked condition are also properties
which provide information about the biological system.

Third, biologists can easily model a biological system with the Petri net, and
study it with the simulation capabilities of Petri net tools. The graphical aspects of
the Petri net are quite similar to biochemical network representation, and this gives
superior communication ability to models and facilitates their design. Moreover,
the Petri net is readily comprehensible and necessitates little related knowledge
on the part of biologists. Its mathematical basis makes it possible to accomplish
complex simulations and to visualize results. The development of software based
on the Petri net and specific to biology, like the Genomic Object Net tool,25,26,47

and the proposal of a data exchange format for models, the “Biology Petri Net
Markup Language” (BioPNML)27,51 leave few obstacles for the adoption of a Petri
net approach by biologists. A powerful analysis and simulation environment can be
implemented from this modeling technique to study hundreds, even thousands, of
interconnections formed by the various genetic and metabolic networks in the cell.

Several types of formal representation other than Petri nets are required to
model biological processes. It was demonstrated that ordinary differential equations
can be substituted by HFPN, but other biological phenomena involving spatial
modeling, like diffusion, or molecular motions modeling, like molecular motors, do
not have an equivalent in Petri net modeling. Because of the potential extensibility
of Petri net formalism, it is possible to think that scientists will go beyond these
modeling limits. Thus, we could also say that these biological phenomena do not
have an equivalent in Petri net modeling yet.

7. Conclusion

In this paper, analysis, modeling and simulation of molecular biology systems using
Petri nets have been presented and an overview of various approaches using colored,
stochastic, hybrid and functional Petri nets was made. The modeling goal of each
approach was identified, thus providing a starting point to interested new users.

Petri net is a formalism with many advantages for biologists. It has analytical
and simulation capabilities which provide means to test hypotheses and gather
information that might help the elaboration of experiments. As we learn more about
metabolic pathways, gene regulatory networks and signalling pathways, powerful
modeling tools like Petri net will be needed to understand the complexity of living
systems.
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32. Hofestädt R, Thelen S, Quantitative modeling of metabolic processes, In Silico Biol
1, http://www.bioinfo.de/isb/1998/01/0006/, 1998.

33. Valk R, Self-modifying nets, a natural extension of Petri nets, Lect Notes Comput Sci
62(ICALP), 464–476, 1978.

34. Ajmone Marsan M, Balbo G, Chiola G, Conte G, Donatelli S, Fransces-chinis G,
An introduction to generalized stochastic Petri nets, Microelectron Reliab
31(4): 699–725, 1991.

35. Goss PJE, Peccoud J, Analysis of the stabilizing effect of Rom on the genetic network
controllin ColE1 plasmid replication, Pac Symp Biocomput 4:65–76, 1999.

36. Srivastava R, Peterson MS, Bentley WE, Stochastic kinetic analysis of the Escherichia
coli stress circuit using σ32-targeted antisense, Biotechnol Bioeng 75(1):120–129, 2001.

37. Srivastava R, You L, Summers J, Yin J, Stochastic versus deterministic modeling of
intracellular viral kinetics, J Theor Biol 218:309–321, 2002.
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