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Abstract

We investigate whether probabilistic parsing techniques from Natural Language
Processing (NLP) can be used for musical parsing. As in NLP, the main problem in
music is ambiguity: several different structures may be compatible with a musical
sequence while a listener typically hears only one structure. Our best probabilistic
parser can correctly predict 85.9% of the phrases for a test set of 1,000 folksongs from
the Essen Folksong Collection.

1.   Introduction
We investigate whether probabilistic parsing techniques from Natural Language
Processing (NLP) can be used for musical parsing. As in natural language, a listener
segments a sequence of notes into groups or phrases that form a grouping structure
for the whole piece (Longuet-Higgins 1976; Tenney & Polansky 1980; Lerdahl &
Jackendoff 1983). For example, according to Lerdahl & Jackendoff (1983: 37) a
listener hears the following grouping structure for the first few bars of melody in the
Mozart G Minor Symphony, K. 550.

Figure 1. Grouping structure for the opening theme of Mozart's G Minor Symphony

Each group is represented by a slur beneath the musical notation. A slur enclosed
within a slur means that a group is heard as part of a larger group. This hierarhical
structure of melody can, without loss of generality, also be represented by a phrase
structure tree, as in figure 2.

Figure 2. Tree structure for the grouping structure in figure 1



Although visually quite different, the two representations in figures 1 and 2 are
mathematically equivalent. Note the analogy with phrase structure trees in
linguistics: a tree describes how parts of the input combine into constituents and
how these constituents combine into larger constituents and into a representation for
the whole input. Apart from this analogy, there is also an important difference: while
the nodes in a linguistic tree structure are typically labeled with syntactic
categories such as S, NP, VP etc., musical tree structures are unlabeled. This is
because in language there are syntactic constraints on how words can be combined
into larger constituents (e.g. in English a determiner can be combined with a noun
only if it precedes that noun, which is expressed by the rule NP -> Det N), while in
music there are no such restrictions: in principle any note may be combined with
any other note. This makes the problem of ambiguity in music much harder than in
language. Longuet-Higgins and Lee (1987) note that "Any given sequence of note
values is in principle infinitely ambiguous, but this ambiguity is seldom apparent to
the listener.".

For example, the first few bars of Mozart's G Minor Symphony could also
be assigned the following, alternative grouping structure (among the many other
possible structures):

Figure 3. Alternative grouping structure for Mozart's opening theme

While this alternative structure is possible in that it can be perceived, it does not
correspond to the structure that is actually perceived by a human listener. There is
thus an important research question as to how to select the perceived tree structure
from the total, possibly infinite set of possible tree structures of a musical input.

In the field of natural language processing (NLP), the use of probabilistic
corpus-based parsing techniques has become increasingly influential for solving
ambiguity (see Manning & Schütze 1999 for an overview). Instead of using a
predefined set of rules, a probabilistic corpus-based parser learns how to parse new
input by generalizing from examples of previously annotated data, and in case of
ambiguity, such a parser computes the most probable phrase structure for a given
input. State-of-the-art probabilistic parsers which use the Wall Street Journal portion
in the Penn Treebank (Marcus et al. 1993) as a test domain, obtain around 90%
correctly predicted phrases (e.g. Charniak 2000; Bod 2001a). With the current
availability of large annotated musical corpora, such as the Essen Folksong
Collection (Schaffrath 1995), we may wonder whether such probabilistic parsing
techniques carry over to musical parsing.

In this paper we will test the usefulness of three probabilistic parsing
techniques for music: the Treebank grammar technique of Charniak (1996) and Bod
(1993), the Markov grammar technique of Collins (1999), and the Data-Oriented
Parsing (DOP) technique of Bod (1998). We develop a new parser which combines
two of these techniques, and which correctly predicts up to 85.9% of the phrases for
a held-out test set of 1,000 folksongs from the Essen Folksong Collection



(Schaffrath 1995). To the best of our knowledge, this paper contains the first parsing
experiments on the Essen Folksong Collection; moreover, it also contains the first
experiments on a musical test set of non-trivial size.

2.   The Essen Folksong Collection
The Essen Folksong Collection provides a large sample of (mostly) European
folksongs that have been collected and encoded under the supervision of Helmut
Schaffrath at the University of Essen (see Schaffrath 1993, 1995; Selfridge-Field
1995). Each of the 6,251 folksongs in the Essen Folksong Collection is annotated
with the Essen Associative Code (ESAC) which includes pitch and duration
information, meter signatures and explicit phrase markers. The pitch encodings in
the Essen Folksong Collection resemble "solfege": scale degree numbers are used to
replace the movable syllables "do", "re", "mi", etc. Thus 1 corresponds to "do", 2
corresponds to "re", etc. Chromatic alterations are represented by adding either a "#"
or a "b" after the number. The plus ("+") and minus ("-") signs are added before the
number if a note falls resp. above or below the principle octave (thus -1, 1 and +1
refer al to "do", but on different octaves). Duration is represented by adding a period
or an underscore after the number. A period (".") increases duration by 50% and an
underscore ("_") increases duration by 100%; more than one underscore may be
added after each number. If a number has no duration indicator, its duration
corresponds to the smallest value. A pause is represented by 0, possibly followed by
duration indicators. No loudness or timbre indicators are used in ESAC.

Thus, the opening theme of Mozart's G Minor Symphony in figure 1 can be
encoded in ESAC as follows.

+3b+2+2_+3b+2+2_+3b+2+2_+7b_0_

Figure 4. ESAC encoding for the opening theme of Mozart's G Minor Symphony

ESAC uses hard returns to indicate a phrase boundary. To make the Essen
annotations readable for our probabilistic parsers, we automatically convert ESAC's
phrase boundary indications into bracket representations, where "(" indicates the
start of a phrase and ")" the end of a phrase. The phrase structures in figures 1 and 2
thus correspond to the following bracket representation.

( ( (+3b+2+2_) (+3b+2+2_) ) (+3b+2+2_+7b_0_) )

Figure 5. Bracket representation for the phrase structures in figures 1 and 2

Figure 6 gives an example of an encoding of an actual folksong from the Essen
Folksong Collection (converted to our bracket representation):

(3_221_-5)(-533221_-5)(13335432)(13335432_)(3_221_-5_)

Figure 6. Bracket representation for folksong K0029, "Schlaf Kindlein feste"

Note that the Essen annotations are very shallow; yet, we will see that it is
surprisingly difficult to predict the correct phrases for the Essen folksongs. To
evaluate our probabilistic parsers for music, we employed the blind testing method
(see Manning & Schütze 1999), by randomly dividing the Essen Folksong
Collection into a training set of 5,251 folksongs and a test set of 1,000 folksongs. As
evaluation metrics we used the notions of precision and recall (see Black et al.



1991) that compare a proposed parse P with the corresponding test set parse T as
follows:

Precision = 
 # correct phrases in P

# phrases in P  

 # correct phrases in P

# phrases in T  
Recall =

A phrase is correct if both the start and the end of the phrase is correctly predicted.
The precision and recall scores are often combined into a single measure of
performance, known as the F-score (see Manning & Schütze 1999): F-score = 2 *
Precision * Recall / (Precision + Recall). We will use these three measures to
quantitatively evaluate our probabilistic parsing models for music.

As a final pre-processing step, we (automatically) added to each phrase in
the folksong the label "P" and to each whole song the label "S", so as to obtain
conventional parse trees. Thus the annotation in figure 6 becomes:

S( P(3_221_-5) P(-533221_-5) P(13335432) P(13335432_) P(3_221_-5_) )

Figure 7. Labeled-bracketing annotation for the structure in figure 6

3.   Parsing the Essen Folksong Collection
3.1    The Treebank Grammar Technique
The Treebank grammar technique, coined by Charniak (1993) but used earlier in
Bod (1993), is an extremely simple learning technique: it reads all context-free
rewrite rules from the training set structures, and assigns each rule a probability
proportional to its frequency in the training set. For example, the following context-
free rules can be extracted from the structure in figure 7:

S -> PPPPP
P -> 3_221_-5
P -> -533221_-5
P -> 13335432
P -> 13335432_
P -> 3_221_-5_

Next, each rewrite rule is assigned a probability by dividing the number of
occurrences of a particular rule in the training set by the total number of
occurrences of rules that expand the same nonterminal as the particular rule. For
instance, if we take folksong in figure 7 as our only training data, then the
probability of the rule P -> 3_221_-5 is equal to 1/5 since this rule occurs once
among a total of 5 rules that expand the nonterminal P.

A Treebank grammar extracted in this way from the training set corresponds
to a Probabilistic Context-Free Grammar or PCFG (Booth 1969). A crucial
assumption underlying PCFGs is that the context-free rules are statistically
independent. Thus, given the probabilities of the individual rules, we can calculate
the probability of a parse tree by taking the product of the probabilities of each rule
used therein. PCFGs have been extensively studied in the literature, and the
efficient parsing algorithms that exist for Context-Free Grammars carry over to
PCFGs (see Manning & Schütze 1999 for the relevant algorithms). The Treebank
grammar obtained in this way from the 5,251 training folksongs was used to parse
the 1,000 folksongs in the test set. We computed for each test folksong the most
probable parse using a standard best-first parsing algorithm (Charniak 1993).



Using the evaluation measures given in section 2, our Treebank grammar
obtained a precision of 68.7%, a recall of 3.4%, and an F-score of 6.5%. Although
the precision score may seem reasonable, the recall score is extremely low, which
indicates that the Treebank grammar technique is a very conservative learner: it
predicts very few phrases from the total number of phrases in the Essen Folksong
Collection, resulting in a very low F-score. One of the problems with the Treebank
grammar technique is that it only learns those context-free rules that literally occur
in the training set, which is evidently not a very robust technique for musical
parsing (while it has been shown to perform quite well in natural language parsing --
see Charniak 1996). We will see, however, that the results improve significantly if
we slightly loosen the way of extracting rules from the training set.

3.2    The Markov Grammar Technique
A technique which overcomes the conservativity of Treebank grammars is the
Markov grammar technique (Seneff 1992; Collins 1999). While a Treebank
grammar can only assign probabilities to context-free rules that have been seen in
the training set, a Markov grammar can in principle assign a probability to any
possible context-free rule, thus resulting in a more robust model. This is
accomplished by decomposing a rule and its probability by a Markov process (see
Collins 1999: 44-48). For example, a third-order Markov process estimates the
probability p of a rule P -> 12345 by:

p(P -> 12345)  =  p(1) × p(2 | 1) × p(3 | 1, 2) × p(4 | 1, 2, 3) × p(5 | 2, 3, 4) ×
   p(END | 3, 4, 5).

The conditional probability p(END | 3, 4, 5) encodes the probability that a rule ends
after the notes 3, 4, 5. Thus even if the rule P -> 12345 does not literally occur in
the training set, we can still estimate its probability by using a Markov history of
three notes. The extension to larger Markov histories follows from obvious
generalization of the above example.

For our experiments, we used a Markov grammar with a history of four
notes. This grammar obtained a precision of 63.1%, a recall of 80.2%, and an F-
score of 70.6%. These results are to some extent complementary to the Treebank
grammar: although the precision is somewhat lower, the recall is (much) higher
than for the Treebank grammar. Thus, while the Treebank grammar predicts too few
phrases, the Markov grammar predicts (a bit) too many phrases. The combined F-
score of 70.6% shows an immense improvement over the Treebank grammar
technique. Experiments with higher or lower order Markov models diminished our
results.

3.3    Extending the Markov Technique with the DOP Technique
Although the Markov grammar technique obtained considerably better scores than
the Treebank grammar technique, it does not take into account any global context
in computing the probability of a parse tree. Knowledge of global context, such as
the number of phrases that occur in a folksong, is likely to be important for
predicting the correct segmentations for new folksongs. In order to include global
context, we conditioned over the S-rule in the tree in computing the probability of a
P-rule. This approach corresponds to the Data-Oriented Parsing (DOP) technique
(Bod 1998) which can condition over any higher or lower rule in a tree. In the



original DOP technique, any fragment seen in the training set, regardless of size, is
used as a productive unit. But in the Essen Folksong Collection we have only two
levels of constituent structure in each tree, which results in a much simpler
probabilistic model. As an example take again the rule P -> 12345 and an S-rule
such as S -> PPPP; a DOP-Markov model based on a history of three notes
computes the (conditional) probability of this rule as:

p(P -> 12345 | S -> PPPP)  =
p(1 | S -> PPPP) × p(2 | S -> PPPP, 1) × p(3 | S -> PPPP, 1, 2) ×
p(4 | S -> PPPP, 1, 2, 3) × p(5 | S -> PPPP, 2, 3, 4) ×
p(END | S -> PPPP, 3, 4, 5).

The extension to larger histories follows from obvious generalization of the above
example. For our experiments, we used a history of four notes. Using the same
training/test set division as before, this DOP-Markov parser obtained a precision of
76.6%, a recall of 85.9%, and an F-score of 81.0%. The F-score is an improvement
of 10.4% over the Markov parser. We also checked the statistical signifance of our
results, by testing on 9 additional random splits of the Essen Folksong Collection
(into training sets of 5,251 folksongs and a test sets of 1,000 folksongs). On these
splits, the DOP-Markov parser obtained an average F-score of 80.7% with a standard
deviation of 1.9%, while the Markov parser obtained an average F-score of 70.8%
with a standard deviation of 2.2%. These differences were statistically significant
according to paired t-testing.

4.    Discussion: other approaches to musical parsing
There exists an extensive literature in the field of computational models of music
analysis (see Cambouropoulos 1998 for an overview). Most if not all approaches to
musical parsing are non-probabilistic and are based on the assumption that the
perceived phrase structure of a musical piece can be predicted on the basis of a
combination of low-level phenomena, such as Gestalt phenomena of proximity and
similarity, and higher-level phenomena, such as melodic parallelism and internal
harmony.

For example, Tenney & Polansky (1980), Lerdahl & Jackendoff (1983) and
Cambouropoulos (1998) use the Gestalt principles (Wertheimer 1923) to predict the
low-level grouping structure of a piece: phrase boundaries preferably fall on larger
time intervals, larger pitch intervals, etc. While most models also incorporate
higher-level phenomena, such as melodic parallelism and harmony, these
phenomena remain often unformalized. For example, Lerdahl & Jackendoff (1983)
do not provide any systematic description of higher-level musical parallelism, and
Narmour's Implication-Realization model (Narmour 1992) relies on factors such as
meter, harmony and similarity which are not fully described by the model. As a
result, these models have not been evaluated against test sets of non-trivial size,
such as the Essen Collection. Only very few, hand-selected passages are typically
used to evaluate these models, which questions the objectivity of the results.

More importantly perhaps, is the fact that the Gestalt principles, which
were originally proposed for visual perception (Wertheimer 1923), do not
straightforwardly carry over to music perception. Elsewhere (Bod 2001b), we have
shown that more than 15% of the phrase boundaries in the Essen Folksong
Collection fall before or after large pitch or time intervals (which we called "jump-
phrases"), rather than at such intervals, and that phrase boundaries can even appear



between identical notes, as in the folksong of figure 6. This goes against the
predictions of any Gestalt-based parser, which would assign phrase boundaries
exactly at large intervals rather than before or after them. We have shown in Bod
(2001b) that higher-level phenomena such as melodic parallelism and internal
harmony are not of any help for predicting the correct phrase boundaries for these
15% jump-phrases. On the contrary, for virtually all these phrases, melodic
parallelism and harmony reinforces the incorrect predictions of the Gestalt
principles. While our best parser is still far from perfect (it obtained a 79.4% F-score
for jump-phrases and a 81.0% F-score for all phrases from the test set), a Gestalt-
based parser would assign incorrect phrase boundaries to all of the jump-phrases. A
probabilistic, corpus-based model seems more apt to deal with these phrases since it
considers counts of any sequence of notes that has been observed with a certain
structure rather than trying to capture these by a few formal rules.

One can of course argue that there may still be a more fundamental
principle or rule, which we do not (yet) know of, and which does predict the correct
grouping boundaries for jump-phrases. The search for such a principle or rule, which
seems to go beyond the harmonic, metric, and melodic nature of music, will be part
of future research. But we should neither rule out the possibility that this particular
grouping phenomenon is inherently memory-based. This possibility may be
supported by Huron (1996) who observed that phrases in western folksongs tend to
exhibit an "arch" shape, where the pitch contour rises and then falls over the course
of a phrase. Thus the group (-533221_-5) in figure 6 displays such an arch contour,
while its alternatively possible grouping (33221_-5) would not (see Bod 2001b for
more details). Assuming that Huron's observation is correct, arch-like patterns may
either express a universal tendency in music, in which case they ought to be
formalized by a rule or principle (but there is no evidence for this universality), or
arch-like patterns may be strictly idiom-dependent, in which case they can be best
captured by a memory-based model that tries to mimic the musical experience of a
listener from a certain culture. Thus, music perception may be much more memory-
based than often assumed. We surmise that a listener's melodic structuring depends
partly on regularities in the input and partly on previous musical experiences. An
adequate model of music analysis should do justice to both aspects of music.

5.    Conclusion
We have shown that probabilistic parsing models from Natural Language Processing
can be successfully applied to musical parsing. Our best parser can correctly predict
up to 85.9% of the phrases for a test set of 1,000 folksongs from the Essen Folksong
Collection. We hope that our results may serve as a baseline for other models of
music analysis. Our parser may also be used to speed up the time-consuming
annotation of newly collected folksongs, thereby contributing to the creation of
larger musical databases in computer-assisted musicology.

A detailed evaluation of our results shows that there is a class of musical
patterns, so-called jump-phrases, that challenge the Gestalt principles of proximity
and similarity. Jump-phrases provide evidence that grouping boundaries can appear
after or before large pitch intervals, rather than at such intervals, and that grouping
boundaries can even appear between identical notes (that are preceded and
followed by relatively large intervals). Elsewhere we have shown that Gestalt-based,
parallelism-based and/or harmony-based models are inadequate to deal with these
patterns. Probabilistic, memory-based models seem more apt to deal with these



gradient phenomena of music analysis since they can capture the entire continuum
between jump-phrases and non-jump-phrases.
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