
0018-9162/98/$10.00 © 1998 IEEE40 Computer

A
gents are important because they let soft-
ware components interoperate within mod-
ern applications like electronic commerce
and information retrieval. Most of these
applications assume that components will

be added dynamically and that they will be
autonomous (serve different users or providers and
fulfill different goals) and heterogeneous (be built in
different ways). Agents can also be components them-
selves, which is characteristic of some promising mod-
ern systems.

Some entities are misrepresented as agents. The
“agents” that marketing groups sometimes refer to,
for example, are typically no more than glorified
search engines or user interfaces. Such entities for the
most part neither are aware of nor can communicate
with other entities like them.1 In the true sense of the
word, an agent is a persistent computation that can
perceive its environment and reason and act both alone
and with other agents. The key concepts in this defin-
ition are interoperability and autonomy.

These concepts set agents apart from conventional
objects, which always fulfill any methods invoked on
them. Agents, in contrast, should be able to refuse an
action. Thus, agents must be able to talk to each other
to decide what information to retrieve or what phys-
ical action to take, such as shutting down an assembly
line or avoiding a collision with another robot. The
mechanism for this exchange is the agent communi-
cation language.

Theoretically, an ACL should let heterogeneous agents
communicate. However, none currently do: Although
ACLs are being used in proprietary multiagent applica-
tions, nonproprietary agents cannot interoperate. Many
believe the fault lies in the lack of a formal semantics.

Past efforts to standardize on the Knowledge Query
Management Language, for example, failed because
many dialects arose. The sidebar “Dialects and Idiolects”
later explains in more detail how this can occur.

To provide agent interoperability, the Foundation
for Intelligent Physical Agents is proposing a standard
ACL based on France Télécom’s Arcol. The hope is
that Arcol’s formal semantics will offer a rigorous basis
for interoperability and prevent the proliferation of
dialects. The sidebar “How Agent Communication
Languages Have Evolved” describes how ACLs have
attempted to realize these goals.

I believe this move toward a formal semantics is
essential if ACLs are to unlock the full potential of
agents. I am not convinced, however, that the existing
work on ACLs, especially on the semantics, is head-
ing in the right direction. It appears to be repeating the
past mistake of emphasizing mental agency—the sup-
position that agents should be understood primarily
in terms of mental concepts, such as beliefs and inten-
tions. It is impossible to make such a semantics work
for agents that must be autonomous and heteroge-
neous: This approach supposes, in essence, that agents
can read each other’s minds. This supposition has
never held for people, and for the same reason, it will
not hold for agents.

In this article, I show why an ACL’s formal seman-
tics should emphasize social agency. This approach rec-
ognizes that communication is inherently public, and
thus depends on the agent’s social context. I believe
such an emphasis will help ease the fundamental ten-
sion between standardizing ACLs and allowing
dialects. Both are desirable, but have thus far been
mutually exclusive. A standard is needed to ensure that
an ACL complies with a particular protocol; dialects

Re
se

ar
ch

 F
ea

tu
re Research Feature

Agent Communication
Languages:
Rethinking the
Principles

Agent communication languages have been used for years in proprietary
multiagent systems. Yet agents from different vendors—or even different
research projects—cannot communicate with each other. The author looks
at the underlying reasons and proposes a conceptual shift from individual
agent representations to social interaction.

Munindar P.
Singh
North
Carolina
State
University

.

December 1998 41

How Agent Communication Languages Have Evolved
Figure A shows the progression of ACLs since the early days

of agents, when there was little agent autonomy, and each project
would invent its own ACL. The first significant interproject ACL
was the Knowledge Query Management Language, proposed as
part of the US Defense Advanced Research Projects Agency’s
Knowledge-Sharing Effort1 in the late 1980s. Several KQML
dialects are still being used.

KQML includes many primitives, all assertives or directives,
which agents use to tell facts, ask queries, subscribe to services,
or find other agents. A sample KQML message is (tell
:sender A :receiver B :content “raining”). The
semantics of KQML presupposes a virtual knowledge base for
each agent. Telling a fact corresponds to reporting on that knowl-
edge base; querying corresponds to the sending agent’s attempt to
extract something from the receiving agent’s knowledge base.

In the early 1990s, France Télécom developed Arcol,2 which
includes a smaller set of primitives than KQML. Again, the prim-
itives are all assertives or directives, but unlike KQML they can
be composed. Arcol has a formal semantics, which presupposes
that agents have beliefs and intentions, and can represent their
uncertainty about various facts. Arcol gives performance condi-
tions, which define when an agent may perform a specific com-
munication. For example, in Arcol, agent Avi can tell agent Bob
something only if Avi believes it also and can establish that Bob

does not believe it. Arcol’s performance conditions thus require
the agents to reason about each other’s beliefs and intentions and
behave cooperatively and sincerely.

The most recent evolution of ACLs is the draft standard pro-
posed by the Foundation for Intelligent Physical Agents
(http://www.fipa.org/). The standard is heavily influenced by
Arcol, adopting the Arcol model and semantics, although it soft-
ens a few of Arcol’s performance conditions. The newer versions
of the standard also discuss interaction protocols—a more
promising line of thought. The FIPA standard also uses Lisp-like
syntactic conventions similar to KQML’s. For most purposes,
however, the current FIPA standard can be treated the same as
Arcol.

References
1. Y. Labrou and T. Finin, “Semantics and Conversations for an Agent

Communication Language,” in Readings in Agents, M. Huhns and
M. Singh, eds., Morgan Kaufmann, San Mateo, Calif., 1998, pp.
235–242.

2. P. Breiter and M.D. Sadek, “A Rational Agent as a Kernel of a Co-
operative Dialogue System: Implementing a Logical Theory of
Interaction,” in Proc. ECAI-96 Workshop Agent Theories, Archi-
tectures, and Languages, Springer-Verlag, Berlin, pp. 261–276.

ACL based
on social agency

• Formal semantics
• High autonomy
• High heterogeneity
• Open dialects

KQML

Early ACLs

Arcol, FIPA standard

• Formal semantics
• Low autonomy
• Low heterogeneity
• Idiolects, but
 dialects possible

• Closed dialects
• Informal semantics
• Some autonomy
• Low heterogeneity

• Informal semantics
• Closed dialects but
 with similar syntax
• Better autonomy
• Low heterogeneity

Roles
Commitments

Societies

Figure A. ACL
progression since
the early days of
agents.

.

42 Computer

are needed to address the different scenarios that can
arise with heterogeneous, autonomous agents.

In making the case for social agency, I look at the
demands on an ACL and examine how KQML and
Arcol are handling features along two critical dimen-
sions: meaning and agent construction.

ELEMENTS OF MEANING
When agents function together, whether to cooper-

ate or compete, they form a multiagent system.
Multiagent systems provide higher level abstractions
than traditional distributed programming. These
abstractions are closer to user expectations and allow
the designer more flexibility in determining behavior.
For example, instead of hardwiring a specific behav-
ior into the agents, multiagent system designers might
have the agents negotiate with one another to deter-
mine the best course of action for that situation. Thus,
ACLs must be flexible enough to accommodate
abstractions such as negotiation. However, the same
flexibility makes it harder to nail down their seman-
tics.

For this reason, to arrive at the meaning of a com-
munication you must examine many elements, includ-

ing perspective, type of meaning, basis (semantics or
pragmatics), context, and coverage (the number of
communicative acts included).

Figure 1 shows the elements in this dimension. The
region in the lower left characterizes existing ACLs,
such as KQML and Arcol.

Perspective
Each communication has potentially three per-

spectives: the sender’s, the receiver’s, and the society’s
(that of other observers). The first two represent a pri-
vate perspective. The third is a public perspective—
the perspective of the multiagent system—available to
all—as opposed to that of the individual agents.

Whose meaning should a language primarily
reflect? As Figure 1 shows, both Arcol and KQML
emphasize the private perspective. In fact, they are
concerned only with the sender’s perspective. This goes
against the literature on human discourse (the very
model that mental agency supposedly follows), which
advocates treating the sender and receiver as equal
partners.

For an ACL to be a true lingua franca, it must be
normative—correctly designed agents must comply
with the ACL so that agents from different design
environments can understand each other. A norma-
tive ACL, in turn, must rely on some standard to
ensure that different implementations preserve that
ACL’s meaning. To be effective, such a standard must
provide some way to test for compliance. If an inter-
action breaks down, you should be able to determine
which component failed (is not complying). If you can-
not determine compliance, the standard is useless.

Furthermore, for compliance to be testable the
ACL’s semantics must have a public perspective. That
is, it must emphasize social agency.

In fact, private perspectives are simply approxima-
tions of the public perspective. They merely have a
role in determining how the agents decide what to
communicate and how it is to be interpreted. An
agent’s designer may use the private perspectives, but
only to set up the agent’s beliefs and intentions so that
its public behavior will comply with the standard.

Type of meaning
The formal study of language has three aspects.

Syntax deals with how the symbols are structured,
semantics with what they denote, and pragmatics with
how they are interpreted and used. Meaning is a com-
bination of semantics and pragmatics.

Pragmatics includes considerations external to the
language proper, such as the mental states of the com-
municating agents and the environment in which they
exist. Consequently, pragmatics can constrain how
agents relate to one another and how they process the
messages they send and receive. When the agents are

Limited Coverage Complete

Fixed Context Flexible

Pragmatic Basis Semantic

Personal Type Conventional

Private Perspective Public

Co
ns

tr
uc

ti
on

Ex
ec

ut
io

n
au

to
no

m
y

H
ig

h

D
es

ig
n

au
to

no
m

y
H

ig
h

Lo
w

Lo
w

Meaning

Figure 1. The design space of agent communication languages. The region in the lower
left represents existing ACLs, which follow a mental agency model. The region in the
upper right represents the desired goals, which dictate a social agency model: high
design and execution autonomy, high coverage (includes all significant categories of
communicative acts), flexible context, semantic basis for meaning, conventional
meaning type, and a public perspective.

.

not fully cooperative or cannot determine implications
as well as humans, they cannot meet the pragmatic
requirements. If these requirements are an essential
part of the ACL, no one can correctly apply it.

As Figure 1 shows, both Arcol and KQML empha-
size pragmatics. In Arcol, an agent must make only
sincere contributions (assertives that are believed true,
requests that it intends should succeed) and may
assume that other agents also make only sincere con-
tributions. Consequently, you cannot use Arcol in set-
tings where sincerity cannot be taken for granted—for
example, in electronic commerce or, broadly, in nego-
tiation of any kind.

Semantics versus pragmatics
A perspective can be combined with a type of mean-

ing, either personal or conventional. In personal mean-
ing, the meaning of communicative acts (described
later) is based on the intent or interpretation of either
the receiver or the sender. For example, the receiver
may understand an act as a directive (purge this file)
when it is syntactically an assertion (this is an old file)
because the receiver is able to infer something from
what the sender is saying.

Both Arcol and KQML emphasize a personal mean-
ing, which can lead to problems. Even the recently
proposed formalization of KQML2 remains focused
on personal meaning, although it considers the effect
of a message on the receiver.

Consider Arcol’s inform construct, which is sup-
posed to merely give information. However, suppose
an agent is to inform another agent that it is raining,
but lacks either a belief in this statement or an inten-
tion to convey that belief to the receiving agent. Does
an inform action take place? Traditional approaches
offer no clear answer.

In conventional meaning, the meaning of commu-
nicative acts is based on usage conventions. The very
idea of a lingua franca presupposes a well-defined con-
ventional meaning. Indeed, language is nothing but a
system of conventions, and they have proved to have
considerable force. If you bid for an expensive item at
Sotheby’s, for example, you are liable for the price
even if you didn’t intend to pay.

By violating the idea of conventions, traditional
approaches go against the wisdom of having different
labels for communicative acts. KQML-based agents
are notorious for replacing all their communicative
acts with variants of the tell construct—KQML’s
version of Arcol’s inform. Likewise, in Arcol,
requests corresponds to informs of a certain
kind. That is, if agent Avi is informed that agent Bob
needs some information, Avi would supply that infor-
mation as if Bob had requested it.

Thus, although traditional ACLs have different
communicative acts, they are not capturing different

conventions, but rather providing convenient
abbreviations.

Context
In general, you cannot understand a com-

munication without looking at its context—
the agent’s physical or simulated environment.
Social context is central to the goals of an
ACL. For agents, the social context need not
be quite as subtle as it is for humans; it must
determine only what agents expect of one
another in their range of response, sincerity,
and so on.

As Figure 1 shows, both Arcol and KQML
have a fixed context, partly because both languages
have too many constraints and partly because they
are inflexible. For example, by imposing the pragmatic
requirement to be cooperative, Arcol requires the
informing agent to believe the proposition being
asserted is true; the informed agent to not already
believe it; and the informer to intend that the informed
agent come to believe it.

These requirements may not be acceptable in cer-
tain contexts. For example, suppose agent Avi wishes
to repeat the conclusion of its negotiations with Bob
with the phrase: “Okay, so the price is $5.” Avi may
communicate this only to formally conclude the nego-
tiations even though it believes Bob already agrees. In
Arcol, Avi would be unable to make this communica-
tion because it would violate a key prerequisite that
Avi believes Bob does not believe the price is $5.

Coverage of communicative acts
When heterogeneous, autonomous agents exchange

information, the meaning of the exchange is charac-
terized by communicative acts. For most computing
scenarios, these acts fall into one of seven categories:

• Assertives, which inform: The door is shut.
• Directives, which request: Shut the door—or

query: Can pelicans fly?
• Commissives, which promise something: I will

shut the door.
• Permissives, which give permission for an act:

You may shut the door.
• Prohibitives, which ban some act: You may not

shut the door.
• Declaratives, which cause events in themselves: I

name this door the Golden Gate.
• Expressives, which express emotions and evalu-

ations: I wish this door were the Golden Gate.

Communicative acts can be put into a stylized form
like “I hereby request . . . ” or “I hereby declare . . . ”.
This grammatical form emphasizes that through lan-
guage you not only make statements but also perform

December 1998 43

In general, you
cannot understand
a communication
without looking at
its context—the
agent’s physical

or simulated
environment.

.

44 Computer

actions. Acting by speaking becomes the essence of
communication. For example, when a justice of the
peace declares a couple man and wife, she is not only
reporting their marital status, but also changing it.
(For that reason, communicative acts are sometimes
called performatives.)

As Figure l shows, Arcol and KQML have limited
coverage; all primitives are either assertives or direc-
tives. In Arcol, you can simulate commissives using
other acts. You can also reduce all acts to assertives,
but using only the restricted meanings Arcol has for
these categories. For example, a request in Arcol is
the same as conveying to the receiver that the sender
intends for it to perform the given action.

Although ACL designers should not try to antici-
pate all possible applications, they should be able to
include acts from all seven categories because agents
need them to enter into and manage more complex
social relationships. Interacting with the underlying
information system, for example, is important in
many applications. This requires some way to initi-
ate and maintain sessions, and authorize and commit
to actions.3 Commissives are essential for the agents
to promise. Permissives and prohibitives let agents
create or deny authority. Declaratives aid in appoint-
ing an agent as a representative or a group leader. And
expressives let an agent convey evaluations and
approvals. (This last category, although now rarely
used, is likely to become more important when emo-
tional agents become more common.)

AGENT CONSTRUCTION
Every ACL semantics must implicitly or explicitly

embody some agent model. However, ACLs vary in
what they emphasize (an individual agent’s mental
state or the social aspects of communication) and in
how much design and execution autonomy they give
an agent. Figure 1 shows how existing ACLs like

KQML and Arcol handle the elements of agent con-
struction.

Mental versus social agency
Mental agency emphasizes an agent’s mental state,

typically described as beliefs and intentions. Social
agency regards agents as social creatures that interact
with one another. As Figure 1 shows, both Arcol and
KQML promote mental agency.

Mental states include

• beliefs, which characterize what an agent imag-
ines its world state to be;

• goals, which describe what states the agent would
prefer;

• desires, which describe the agent’s preferences,
sometimes with motivational aspects; and

• intentions, which characterize the goals or desires
the agent has selected to work on.

Mental agency presupposes the intentional stance,
which is the doctrine that you can describe any sys-
tem using terms such as beliefs and intentions.4 This
is a compelling view because it says that modelers can
create an agent using intentional terms. However, it
does not solve the practical problem of how to deter-
mine the unique beliefs and intentions of an arbitrary
agent just from its design and environment.

Consider the snippets of code for Agent Avi in
Figure 2. How can you say whether or not Avi believes
it is raining? Suppose you say that only agents with
an explicit string raining in the data structure
beliefs believe that it is raining. With that criterion,
you eliminate a large subset of practical agents,
because most agents do not carry a beliefs data
structure. Moreover, if two agents did have a
beliefs data structure and the structures were the
same, the agents could act differently enough—
because of differences in their programs or other data
structures—that you couldn’t say for sure whether
they have the same beliefs.

On the other hand, without an explicit representa-
tion, anyone can claim anything about an agent’s
beliefs. For this reason, mental agency alone cannot
provide the normative basis for an ACL semantics.

Each communicative act in Figure 2 poses a chal-
lenge for languages that promote mental agency.
Traditional approaches also ignore whether Bob can
really make it rain (when requested or permitted) or
stop the rain (when prohibited); whether Avi can make
it rain (when he promises); and whether Avi has the
authority to permit or prohibit any of Bob’s actions
or to name weather conditions.

Ultimately, traditional ACL approaches conclude
that if Avi’s designer wants it to comply, it does. This
is profoundly unsatisfactory, because it means that

Acl send (Bob,
"inform(raining)"
"request(raining)"
"commit(raining)"
"prohibit(raining)"
"permit(raining)"
"wish(raining)"
"declare name(this rain, The Deluge)")Agent Avi Agent Bob

Figure 2. Why you cannot determine compliance under the mental agency model. You
cannot determine whether agent Avi is compliant in sending the inform message,
because there is no way to determine whether Avi believes it is raining. Similarly, the
request is problematic, because there is no way to determine whether Avi believes
Bob can make it rain. The same is true for the wish message. The other messages
have a similar fate, although most wouldn’t fit in traditional ACL syntax anyway.

.

compliance depends on neither the agent’s behavior
nor its design, but on how the design is documented.
This position is conceptually and practically incoher-
ent, because it means that any designer who cares to
insert a comment saying “This program is correct” is
freed from establishing its compliance.

A more promising approach is to consider com-
municative acts as part of an ongoing social interac-
tion. Even if you can’t determine whether agents have
a specific mental state, you can be sure that commu-
nicating agents are able to interact socially. This is
analogous to the distinction between an object’s
behavior (external) and state (internal). Interfaces in
traditional software design are based on behavior,
although state representations may be used to realize
the desired behavior.

Practically and even philosophically, the compli-
ance of an agent’s communication depends on whether
it is obeying the conventions in its society, for exam-
ple, by keeping promises and being sincere.

Design autonomy
Design autonomy minimizes requirements on agent

builders, thus promoting heterogeneity (the freedom
to have agents of different design and construction).
This, in turn, leads to a wider range of practical sys-
tems. For example, in a traditional setting, a Web
browser can be implemented in any way as long as it
follows the standard protocols.

Traditional approaches such as Arcol and KQML
require agents to be implemented using representa-
tions of the mental concepts. As Figure 1 shows, this
requirement reduces design autonomy. Agents may
have to have beliefs and intentions, be able to plan
and perform logical inferences, or be rational. These
constraints also preclude many practical agent designs
because you cannot uniquely determine an agent’s
mental state.

Execution autonomy
Execution autonomy corresponds to an agent’s free-

dom to choose its own actions. An ACL can limit exe-
cution autonomy by requiring agents to be sincere,
cooperative, benevolent, and so on. Execution auton-
omy is orthogonal to design autonomy because agents
of a fixed design can have actions their designers can-
not control; likewise, agents of diverse designs can
have controllable actions. For example, two users with
the same Web browser can still act differently, and
those with different browsers can act the same if the
browsers have similar functionality.

As Figure 1 shows, execution autonomy is low in
Arcol; indeed, the language constrains agents to behave
in ways many people could not emulate: Arcol agents
must always speak the truth, believe each other, and
help each other. This is appropriate for user inter-

faces—Arcol’s original application domain—
because the computational agent deals only with
one other agent, the user. However, in other
applications, this low autonomy means that
Arcol can be applied only if the agent designers
themselves subvert its semantics.

KQML, on the other hand, does not demand
any specific form of sincerity or helpfulness and
therefore better preserves execution autonomy.
The historical reason for this difference is that
KQML was designed for interoperation
(although it failed), whereas Arcol was designed
as a proprietary language for a specific system.
Arcol designers reduced autonomy to suit that
system, which simplified that system’s design.

TOWARD SOCIAL PRINCIPLES
If, as Figure 1 shows, you assume that the ideal ACL

would take a public perspective, emphasize conven-
tional meaning, avoid pragmatics, consider context,
and include all major communicative acts, you would
be advocating a model that endorses social agency.

In an effort to move ACLs more closely toward that
ideal, my colleagues and I at North Carolina State
University are developing an approach based on soci-
eties of agents.

Protocols and societies
In our approach, agents play different roles within

a society. The roles define the associated social com-
mitments or obligations to other roles. When agents
join a group, they join in one or more roles, thereby
acquiring the commitments that go with those roles.
The commitments of a role are restrictions on how
agents playing that role must act and, in particular,
communicate. In general, agents can operate on their
commitments by manipulating or even canceling
them.

These operations enable flexible behavior, but are
themselves constrained by metacommitments to
ensure that arbitrary behaviors do not result.
Consequently, we specify protocols as sets of com-
mitments rather than as finite state machines. Such
protocol specifications can accommodate the kinds of
exceptions that arise in multiagent systems.

Suppose that agent Avi is a seller and agent Bob is
a buyer. Our protocol could include the following
actions:

• Avi must respond to requests for price quotes (a
form of cooperative behavior).

• Avi’s price quotes issued to different agents within
a specified period must be the same (sincerity).

• If Bob agrees to buy at a price, its check won’t
bounce (keeping promises).

• Avi will honor a price quote, provided Bob

December 1998 45

Our framework
presupposes a richer

infrastructure
for agent

management,
which we

term society
management.

.

46 Computer

responds within a specified period (keeping
promises).

Designers can create specific protocols, and hence
societies, for different applications such as electronic
commerce, travel applications, industrial control,
logistics, and student registration. As societies are
designed, we envision that their specifications would
be published.

Different vendors could supply agents to play dif-
ferent roles in these societies. Each vendor’s agent
would have to comply with the protocols in which it
participates. Because protocol requirements would be
expressed solely in terms of commitments, agents
could be tested for compliance on the basis of their
communications. This means the implementation need
not be revealed, which is an important practical con-
sideration (for example, to protect trade secrets). Also,
because agents participate in a society, the society sup-
plies the social context in which the communications
occur. Thus, communicative acts can be more expres-
sive and powerful because designers who agree on a
standard society can assume a lot more about each
other’s agents.

Our framework presupposes a richer infrastructure
for agent management, which we term society man-
agement. This infrastructure supports the definition
of commitments, roles, and groups, as well as opera-
tions for agents to join a society in specific roles, to

change roles, and to exit the society. Our framework
also promotes execution autonomy. For example, Avi
might only make assertions that it believes others don’t
already believe, whereas Bob may not restrict itself in
such a manner. In general, the agents can act as they
please provided they obey the restrictions of the soci-
eties they belong to and the protocols they follow.

Challenges
Our society-based approach avoids the problem of

idiolects described in the sidebar “Dialects and
Idiolects” because the essential semantic components
act as normatives for agent behavior. Designers can
create and popularize specialized societies—those that
support more restrictive protocols for specific appli-
cations. When a protocol explicitly involves mental
concepts (for example, by requiring a role to be sin-
cere), it must also give some criteria to evaluate an
agent’s beliefs.

As such, our approach actually encourages dialects.
The difference from the dialect problem described in
the sidebar is that dialects in our approach have a
social semantics and are not proprietary. Designers
can define societies of their liking and implement
agents to play appropriate roles in them. However,
designers also know ahead of time the precise differ-
ences among dialects, and can expect their agents to
communicate successfully with agents from other soci-
eties only to the extent that their dialects agree.
Dialects of this variety enable the context sensitivity
that is essential to building significant applications.
Such dialects are good. The problem with traditional
approaches is not the use of dialects per se, but that the
dialects are arbitrary and cannot be adequately for-
malized in the chosen framework.

We envision the design and establishment of soci-
eties as essentially a community effort, much like
Internet evolution. Protocols will spread much like the
proliferation of network protocols, markup languages,
and e-mail data formats: When enough vendors sup-
port a protocol, it will become a worthwhile target for
other vendors.

The challenge thus becomes finding an approach
that is normative at the society level and preserves
some of the intuitions behind the high-level abstrac-
tions such as beliefs and intentions. Such an approach
would provide a canonical form of protocols and a
canonical definition for the different communicative
acts. There are two obvious solutions. The first is to
have a purely behavior-based approach, but this may
limit the ability to describe complex agent states. The
second is to have a purely mentalist approach, which
as I have described, reduces agent design autonomy
and is inherently noncanonical.

A third, less obvious, approach is to combine social
commitments with a public perspective on the men-

Dialects and Idiolects
When agents from different vendors—or even dif-

ferent research projects—attempt to parse each
other’s messages, they cannot understand them cor-
rectly. This happens for two reasons. First, the
receiving agent may not recognize the application-
specific terms the sending agent is using to commu-
nicate. Second—and perhaps more important—
even basic communication components are not uni-
formly understood. Both these problems stem from
differing interpretations of key concepts, and the
result is the evolution of multiple dialects within a
language.

Idiolects—a variant of a language specific to one
agent—result when the language emphasizes private
perspective and personal meaning, as described in the
main text. When only the private perspective is consid-
ered, an agent can produce or interpret messages as it
unilaterally sees fit. Such an agent follows the philoso-
phy of Lewis Carroll’s Humpty Dumpty: Words mean
exactly what I want them to. And communicating
agents suffer the same problem as Alice, who failed to
understand much of what Humpty Dumpty said.

.

tal states. This approach, which I originated and am
currently investigating,5 defines when an agent’s com-
municative act would be wholeheartedly satisfied. For
example, assertives are satisfied if the world matches
what they describe. Directives are satisfied when the
receiver acts to ensure their success—and has the
required intentions and know-how. Commissives are
satisfied when the sender acts to ensure their success.
This approach is thus a hybrid: Although it takes some
steps toward a coarse canonical set of objective defi-
nitions, it does not uniquely ascribe beliefs and inten-
tions to agents. However, designers can use it to
construct agents that would keep their public com-
mitments.

A lthough all the fundamental issues in agent
communication are far from resolved, my
advice to people attempting to build multiagent

systems is not to lose heart. Only through experience
can some of these key questions be resolved. I have
two recommendations. First, reflect on the issues this
article raises as they affect a particular ACL or its
implementation:

• What model of agency does the ACL require?
• How much does an ACL constrain an agent’s

design?
• Which perspective does the ACL embody?
• How can I determine what an agent believes or

intends? You might need to make additional
assumptions, essentially killing interoperation,
to determine beliefs and intentions unambigu-
ously. Alternatively, you might use beliefs and
intentions only to design your own agents and
not expect to know the details of other designs.

If, after answering these questions, you decide to
use a specific ACL, understand that you have accepted
its limitations as well. If the answers are unacceptable,
you know to explore alternatives. A reasonable option
is to reject the official semantics and use a commit-
ment-based semantics instead.

My second recommendation is to start building sys-
tems. Always keep in mind that protocols are more
important than individual communicative acts, and the
best semantics is what you negotiate with other design-
ers. For this reason, I believe that the strongest stan-
dards will develop in applications and markets that use
agents heavily. As often happens in computing, the chal-
lenge will then be for the theoreticians to catch up. ❖

Acknowledgments
This is an extended and revised version of a posi-

tion paper presented at the Fifth Meeting of the
Foundation for Intelligent Physical Agents, April

1997. I thank Manny Aparicio, Michael Huhns,
Yannis Labrou, Abe Mamdani, David Sadek, and
Donald Steiner for discussions, the anonymous
Computer reviewers for comments, and Nancy
Talbert for careful editing.

This work is supported by the NCSU College of
Engineering, the National Science Foundation under
grants IIS-9529179 and IIS-9624425 (Career Award),
and IBM Corp.

References
1. M. Huhns and M. Singh, “Agents and Multiagent Sys-

tems: Themes, Approaches, and Challenges,” in Read-
ings in Agents, M. Huhns and M. Singh, eds., Morgan
Kaufmann, San Mateo, Calif., 1998, pp. 1-23.

2. Y. Labrou and T. Finin, “Semantics and Conversations
for an Agent Communication Language,” in Readings
in Agents, M. Huhns and M. Singh, eds., Morgan Kauf-
mann, San Mateo, Calif., 1998, pp. 235–242.

3. M. Singh, J. Barnett, and M. Singh, “Enhancing Con-
versational Moves for Portable Dialogue Systems,” in
Working Notes of the AAAI Fall Symp. Communicative
Action in Humans and Machines, American Assoc. of
Artificial Intelligence, Menlo Park, Calif., 1997.

4. J. McCarthy, “Ascribing Mental Qualities to Machines,”
in Formalizing Common Sense: Papers by John
McCarthy, V. Lifschitz, ed., Ablex Publishing, Norwood,
N.J., 1990, pp. 93-118.

5. M. Singh, Multiagent Systems: A Theoretical Frame-
work for Intentions, Know-How, and Communications,
Springer-Verlag, Heidelberg, 1994.

Munindar P. Singh is an assistant professor of com-
puter science at North Carolina State University, where
his research interests are the theory and application of
agents in information-rich environments. He is the edi-
tor-in-chief of IEEE Internet Computing and a mem-
ber of the editorial board of Kluwer’s Journal of
Autonomous Agents and Multiagent Systems. Singh
is author of Multiagent Systems (Springer-Verlag,
1994) and coeditor of Readings in Agents (Morgan
Kaufmann, 1998). Singh received a BTech in computer
science and engineering from the Indian Institute of
Technology, and an MSCS and a PhD in computer sci-
ence from the University of Texas at Austin.

Contact Singh at Dept. of Computer Science, North
Carolina State University, Raleigh, NC 27695-7534;
singh@ncsu.edu.

December 1998 47

.

