Multi-agent and Semantic Web Systems: Agent Communication

Fiona McNeill

School of Informatics

14th March 2013
Agents and this course

• Agents can be thought of as representing the ultimate vision of the Semantic Web: fully autonomous systems dynamically interacting in complex ways.

• This lecture and the next lecture discuss what these systems would be like and would kind of technology this would require.

• The final lecture discusses how they could utilise the Semantic Web as a Multi-agent system to fully realise this goal.
What are Agents?

- Situated in an environment;
- can sense the environment, and
- perform actions.
What are Agents?

‘Intelligent’ characteristics of agents:
- autonomy
- reasoning ability
- learning ability
- mobility
- sociability
- cooperation
- negotiation

Autonomy
- Can initiate tasks without external intervention.
- Behaviour is based on experience as well as in-built knowledge.
Multi-Agent Systems (MAS)

• Distributed system which incorporates independent agents.
• The collection of agents interact, and
• solve problems that are outside their individual capacities.
• Focus on properties that emerge from cooperation (vs. capabilities of individual agents)
• ‘standard’ distributed system: coordination must be specified in advance
• Multi-Agent system: (some aspects of) coordination achieved dynamically at run-time
• Possible advantages:
 • fault-tolerance
 • scalability
 • concurrency
Why communicate?

- **Information Exchange**: share knowledge;
- **Collaboration**: optimising use of resources and distribution of tasks, coordinating execution;
- **Negotiation**: reaching agreement in the presence of conflict
Communication involves sharing at various levels, including:
- how to describe states of affairs (vocabulary, grammar),
- how to carry out speech acts (performative verbs),
- how to engage in dialogue.

Main goal of communication: influence other agents; e.g., to make them perform actions or to make them believe certain propositions.

Other agent decides whether to perform action or believe proposition.
• Most treatments of communication in (multi-)agent systems borrow their inspiration from speech act theory.
• Speech act theories are pragmatic theories of language, i.e., theories of language use;
• attempt to account for how natural language is used to achieve goals and intentions.
• Original theory by J.L.Austin, *How to do things with words*.

Speech Act Theory: Communication as action

Speech Acts: Performatives “change the state of the world like a physical action”; everything we utter is uttered with the intention of satisfying some goal or intention
Kinds of Speech Act

• **Locutionary act**: the act of generating sounds that are linked together by grammatical conventions so as to say something meaningful.

• **Illocutionary act**: the speech act of doing something else in the process of uttering meaningful language.
 - *I will gladly pay you £1.00 next week*
 - illocutionary act of making a promise

• **Perlocutionary act**: the contingent effect on those who hear a meaningful utterance.
 - By telling a ghost story late at night, one may accomplish the perlocutionary act of frightening someone.
Performatives

Speech acts often divided into two components:
- performative verb: request, inform, promise, ...
- propositional content: the door is closed

\(\phi = \text{the door is closed} \)

Example Performatives

REQUEST + \(\phi \) \(\Rightarrow \) Please close the door!
INFORM + \(\phi \) \(\Rightarrow \) The door is closed.
INQUIRE + \(\phi \) \(\Rightarrow \) Is the door closed?
More Speech Act Theory

Searle (1972) categorization of performatives:

Assertives: informing, claiming something is true
Directives: requesting, commanding
Commissives: promising, refusing
Declaratives: making change to state of world (e.g. marrying)
Expressives: expressing mental states

Like all taxonomies, this is open to debate.
Conditions on Speech Acts

• Austin & Searle described conditions under which speech acts are successful.

• Austin’s **felicity conditions**:
 • Has to be conventional procedure for carrying out speech act;
 • procedure has to executed correctly;
 • act has to be sincere, uptake must be completed as far as possible.

• Searle:
 • Preparatory conditions must hold (e.g., requested action can be performed, speaker must believe this, hearer not already intending to perform action).
 • Sincerity conditions (speaker wants action to be performed).
DARPA Knowledge Sharing Effort (KSE)

- Project from early ’90s aimed at developing techniques, tools and re-usable resources to support building large-scale knowledge-based systems and knowledge bases.

- Results in the area of knowledge representation:
 - **Syntax** KIF (propositional content)
 - **Semantics** Ontolingua (language for defining sharable ontologies)
 - **Pragmatics** KQML (high-level interaction language)
• KIF and KQML are both Agent Communication Languages (ACLs)

• **KQML** (Knowledge Query and Manipulation Language). ‘Outer’ language; defines message envelope format.

• **KIF** (Knowledge Interchange Format). ‘Inner’ language; defines message content.
 • Essentially a LISP-based notation for First Order Logic.
 • Intended as interlingua for encoding declarative knowledge.
 • Features: semantics independent of implementation; non-decidable, ‘human readable’
 • Current specification at http://logic.stanford.edu/kif
Possible to express:

• properties of things in a domain (*John has a mobile phone, Mary has short hair*)

• relationships between things in a domain (*Luke is married to Jane*)

• general properties of a domain (*every student has a matriculation number*)

• Standard vocabulary for data structures (numbers, strings etc., complex objects, lists etc.) and methods on them.
KIF Examples

The temperature of m1 is 83 Celsius

(= (temperature m1) (scalar 83 celsius))

X is a bachelor iff X is a man and is not married

(defrel bachelor (?x) :=
 (and (man ?x)
 (not (married ?x))))

If X is a person then X is a mammal

(defrel person (?x) => (mammal ?x))
• Knowledge Query and Manipulation Language (KQML).

• High-level, message-oriented language for information exchange.

• Makes no assumptions about:
 • transport mechanism;
 • content language;
 • ontology used in message content.

• Message types particularly oriented towards multi-agent communication.
Example KQML Message

```
(tell :sender amazon.com
    :receiver info-agent0011
    :in-reply-to msid-7.24.97.45391
    :ontology http://amazon.com/Books
    :language prolog
    :content price(item567, gbp, 24.95)
)
```
Example KQML Message

```
(tell  :sender       amazon.com
      :receiver     info-agent0011
      :in-reply-to  msid-7.24.97.45391
      :ontology     http://amazon.com/Books
      :language     prolog
      :content      price(item567, gbp, 24.95)
    )
```

- performative
Example KQML Message

```
(tell :sender     amazon.com
     :receiver    info-agent0011
     :in-reply-to msid-7.24.97.45391
     :ontology   http://amazon.com/Books
     :language   prolog
     :content    price(item567, gbp, 24.95)
)
```

- **performative**

- **parameter (an attribute/value pair)**
KQML Message

Example KQML Message

(tell :sender amazon.com
 :receiver info-agent0011
 :in-reply-to msid-7.24.97.45391
 :ontology http://amazon.com/Books
 :language prolog
 :content price(item567, gbp, 24.95)
)

- performative
- parameter (an attribute/value pair)
- declarative message content
KQML Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>:content</td>
<td>content of message</td>
</tr>
<tr>
<td>:language</td>
<td>formal language of message content</td>
</tr>
<tr>
<td>:ontology</td>
<td>vocabulary employed by message</td>
</tr>
<tr>
<td>:force</td>
<td>will sender ever deny content of message?</td>
</tr>
<tr>
<td>:reply-with <label></td>
<td>whether the sender expects a reply, and if so, a label for the reply</td>
</tr>
<tr>
<td>:in-reply-to <label></td>
<td>the expected label in a reply</td>
</tr>
<tr>
<td>:sender</td>
<td>sender</td>
</tr>
<tr>
<td>:receiver</td>
<td>receiver</td>
</tr>
</tbody>
</table>
KQML Example Performatives

<table>
<thead>
<tr>
<th>Performative</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ask-if</td>
<td>Is it true that …?</td>
</tr>
<tr>
<td>achieve</td>
<td>Make it true that …</td>
</tr>
<tr>
<td>tell</td>
<td>It is true that …</td>
</tr>
<tr>
<td>reply</td>
<td>The answer is …</td>
</tr>
<tr>
<td>evaluate</td>
<td>Simplify the sentence …</td>
</tr>
</tbody>
</table>
Basic Query Dialogue

Agent A sends the following performative to agent B:

(evaluate :language KIF
 :ontology motors
 :reply-with q1
 :content (val (torque motor1) (sim-time 5)))

Agent B replies with:

(reply :language KIF
 :ontology motors
 :in-reply-to q1
 :content (scalar 12 kgf))
• KQML/KIF widely adopted, but
• list of performatives (~41) not fixed, and lacks clear rationale;
• no formal semantics for performatives;
• lacks commissives (e.g., promises).
FIPA ACL, 1

- FIPA ACL (Agent Communication Language): a specification for inter-agent communication via message passing.
 - Assumes that agents have Beliefs, Desires and Intentions (BDI model)
 - FIPA ACL is similar in design to KQML, but gives an explicit BDI-based semantics to the performatives, using a Semantic language called SL.

Example FIPA ACL Message

```
(inform :sender   agent1
 :receiver   agent2
 :ontology  hpl-auction
 :language  fipa-sl
 :content   (price item567 24.95)
)
```
Basic performatives: inform, request
All others (~ 20) defined in terms of these two.

Semantics divided up into
- feasibility precondition, and
- rational effect

Semantics is formalized using following modal operators:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B_i \phi$</td>
<td>i believes that ϕ</td>
</tr>
<tr>
<td>$B i_i \phi$</td>
<td>$B_i \phi \lor B_i \neg \phi$, i.e., i has a definite opinion about the truth of ϕ</td>
</tr>
<tr>
<td>$l_i \phi$</td>
<td>i has the intention of bringing about ϕ</td>
</tr>
<tr>
<td>Agent(α, i)</td>
<td>i is capable of carrying out action α</td>
</tr>
<tr>
<td>Done(α)</td>
<td>action α has been carried out</td>
</tr>
<tr>
<td>Uif$_i \phi$</td>
<td>i is uncertain whether or not ϕ [ignored here]</td>
</tr>
</tbody>
</table>
Inform

\[\langle i, \text{inform}(j, \phi) \rangle \]

- **feasibility precondition**: \(B_i \phi \land \neg B_i B_i \phi \)
- **rational effect**: \(B_j \phi \)

Inform that \(\phi \) indicates that the sending agent:

- holds that \(\phi \) is true,
- does not already believe that the receiver \(j \) has any knowledge of the truth of the \(\phi \), and
- intends that \(j \) also comes to believe that \(\phi \) is true.
Request

\[\langle i, \text{request}(j, \alpha) \rangle \]

<table>
<thead>
<tr>
<th>feasibility precondition</th>
<th>[B_i \text{Agent}(\alpha, j) \land \lnot B_i j \text{Done}(\alpha)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>rational effect:</td>
<td>[\text{Done}(\alpha)]</td>
</tr>
</tbody>
</table>

request that \(\phi \) indicates that the sending agent:
- holds that \(j \) is capable of carrying out action \(\alpha \), and
- does not believe that \(j \) is intending to bring it about that \(\alpha \) is carried out.

For more details, and information about other performatives, see
Agent Protocols

- Agents can have divergent interests (e.g., seller and buyer) but still cooperate

- Use protocols:
 - defines ‘rules of engagement’ between agents
 - Example: an QUERY message is followed by an INFORM message
 - often modelled as a finite-state machine

- Protocols will also contain more detailed specifications depending on the type of interaction

- Example: fixed price sale vs. an auction
Protocols as FSMs

• Protocols are often implemented as Finite State Machines.

• Each state represents a stage in the conversation — sometimes thought of as an information state.

• Arcs represent the exchanged messages that allow transition to a new state.

• Valid messages depend on the current state of the conversation — represented by outgoing arcs.

• Final states represent completed conversations.
Example FSM for a Conversation

[Diagram of a Finite State Machine (FSM) showing states and transitions between 'Login', 'Search', 'Order', 'Pay', and 'Logout'.]
Protocols in FIPA ACL

• Notion of agent ‘protocol’ often refers to stereotyped pattern of conversation between agents.

• Available protocols are usually *pre-specified* by the agent designer.

• Agents somehow need to discover which protocol to follow.

• Choice of protocol to follow could be negotiated,

• but in FIPA ACL, convention is to place name of the protocol in the :protocol parameter of the message.
FIPA-Query-Protocol

Initiator

query-if

query-ref

refuse

agree

[agreed]

failure

inform-t/f

[query-if]

inform-result

[query-ref]

Participant

[agreed]
Explanation of FIPA-Query-Protocol

UML Sequence Diagram. The diamond symbol indicates a decision that can result in zero or more communications being sent.

- Initiator requests Participant to perform a inform action:
 - query-if: whether proposition P is true or false
 - query-ref: query about specified objects
- Participant processes request and decides whether to accept or refuse.
- If decides to accept, “agreed” becomes true.
- Participant uses inform-t/f to assert whether P is true or false;
- uses inform-result to refer to object that was queried about.
Problems with Mentalistic Approach

• How can the sender rely on the receiver to adopt certain beliefs?

• More generally, the behaviour of an agent does not give unambiguous information about its mental state.

• Alternative approach in terms of social commitments:
 • agent commits / promises to carry out certain actions;
 • e.g., buyer in an auction commits to paying for goods;
 • fulfilment of commitments can be verified.
Summary

• Focus on agent-agent communication;

• Speech act theory provides theoretical framework for ACLs;

• Two examples:
 • KQML/KIF
 • FIPA-ACL
• Reading: Wooldridge *An Introduction to MultiAgent Systems*, Chapter 8

• See also Wooldridge’s web site: http://www.csc.liv.ac.uk/~mjw/pubs/imas