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Fig. S1. F statistics for breakpoint analysis. (A) The F statistic is smooth and well-behaved for the empirical data and reaches a maximum of F(k) ≈ 1,035 for
observation k = 1,759. This maximum corresponds to a breakpoint at log (μ(1,759)) ≈ 0.36 and separates the data into two regimes characterized by exponents
αI ≈ 0.55 and αC ≈ 0.85 to the left and right of the point, respectively. (B) The F statistic for the synthetic data are very rugged and the resulting maximum is
effectively degenerate. This irregular behavior of the F statistic violates the underlying assumption of having a well-defined maximum and, consequently, does
not provide sufficient statistical evidence for introducing a breakpoint in the data.
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Fig. S2. Total activity F(t) as a function of time t, where a unit of time is one observation, corresponding to calendar time from June 25 to August 14, 2007.
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subsequently discontinued this practice.) Consequently, users with
many Facebook friends are then, at least in principle, in a position
to influence a larger number of other users. In addition, everyone
has access at all times to an all-inclusive listing of applications
ranked by their current global popularity, which acts as an effective
“best-seller” list. Although applications are free of charge, popular
applications have the advantage of being readily discoverable (low
search cost), and are more likely to be of higher quality both with
respect to reliability (exhaustively tested) and functionality (su-
perior features). The applications provide recreational value and
can be seen as cultural goods, and the different ways users process
local and global signals in choosing applications reflect their per-
sonal preferences, that is, the underlying heterogeneity of the
population.
In addition to the distinction between local and global signals, it

is important to classify systems into two separate categories based
on whether their dynamics are endogenous without external driv-
ers, or exogenous and driven externally, or both. These distinctions
are useful because they identify the fundamental characteristics of
the system, and hence enable systematic comparisons with other
systems. Epidemic spreading in a closed system is an example of an
endogenous process with local transmission, because the patho-
gens need to be passed from one person to another in close
physical proximity. Similarly, it is possible to model the spread of
innovations such as the uptake of new hybrid crops by farmers as
an endogenous social contagion process, and to try to distinguish
between different types of local processes that may underlie the
observed rate at which the innovation is adopted (26). However,
studies of social influence which focus on local and endogenous
processes such as word-of-mouth transmission are almost always
open to the challenge that they neglect equally important exoge-

nous effects such as marketing or mass advertising, and typically
trying to separate these two confounding factors is highly prob-
lematic. For instance, a reanalysis (27) of the classic diffusion
studies on how prescriptions for an antibiotic drug spread among
physicians in different communities (10, 11) suggests that mar-
keting efforts, in this context corresponding to external drivers, can
account for most of the observed behavior. Although in general
both endogenous and exogenous effects may be present in both
online and offline systems, as part of our research design we have
identified a system that does not have an exogenous component.
Instead, both local and global signals are generated endogenously
within the system, that is, there is no exogenous driver. This is in
contrast to classic innovation diffusion models (e.g., 28), which
feature one rate of contagion from within the group (local signal)
and another externally imposed (as opposed to endogenously
generated) rate of contagion from outside the group (global sig-
nal). Another important feature is that here the user has an active
role in deciding whether or not to adopt an application.
We downloaded the data from Facebook for all existing 2,720

applications between June 25 and August 14, 2007, shortly after
applications were introduced. These data consist of time series
ni(t) with i = 1,2,. . .,M = 2,720 and t = 1,2,. . .,T = 1,208 cor-
responding to the aggregate number of users who have appli-
cation i installed at time t (Fig. 1B). Data for 15 applications
were partly corrupted and were consequently omitted from the
analysis, leaving us with 2,705 applications, or 99% of the data.
These data cover 100% of the population of 50 million potential
adopters and 99% of all applications that may be adopted, in
practice giving us a complete view of system-wide adoptions.
Importantly, studying all of the applications avoids a selection
bias, which is generated by examining the trajectories of those
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Fig. 1. Facebook users and applications. (A) The users (round nodes) form a social network (solid lines) which influences their behavior in adopting
applications (hexagons). The dashed lines connecting users to applications indicate which applications each user has installed. (B) Number of users ni(t) as
a function of time t for four applications of which “Texas HoldEm Poker” is the most popular one at the end when t = T. (C) Number of users ni(T) sorted in
descending order for the 2,123 applications that have ni(T) > 0 (Zipf plot). (D) Probability density distribution P(n(T)) versus n(T) is fat-tailed. The dashed
line ∼n(T)−2 corresponds to the limit where the mean of the distribution diverges.
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has access at all times to an all-inclusive listing of applications
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observed rate at which the innovation is adopted (26). However,
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keting efforts, in this context corresponding to external drivers, can
account for most of the observed behavior. Although in general
both endogenous and exogenous effects may be present in both
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identified a system that does not have an exogenous component.
Instead, both local and global signals are generated endogenously
within the system, that is, there is no exogenous driver. This is in
contrast to classic innovation diffusion models (e.g., 28), which
feature one rate of contagion from within the group (local signal)
and another externally imposed (as opposed to endogenously
generated) rate of contagion from outside the group (global sig-
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role in deciding whether or not to adopt an application.
We downloaded the data from Facebook for all existing 2,720

applications between June 25 and August 14, 2007, shortly after
applications were introduced. These data consist of time series
ni(t) with i = 1,2,. . .,M = 2,720 and t = 1,2,. . .,T = 1,208 cor-
responding to the aggregate number of users who have appli-
cation i installed at time t (Fig. 1B). Data for 15 applications
were partly corrupted and were consequently omitted from the
analysis, leaving us with 2,705 applications, or 99% of the data.
These data cover 100% of the population of 50 million potential
adopters and 99% of all applications that may be adopted, in
practice giving us a complete view of system-wide adoptions.
Importantly, studying all of the applications avoids a selection
bias, which is generated by examining the trajectories of those
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Fig. 1. Facebook users and applications. (A) The users (round nodes) form a social network (solid lines) which influences their behavior in adopting
applications (hexagons). The dashed lines connecting users to applications indicate which applications each user has installed. (B) Number of users ni(t) as
a function of time t for four applications of which “Texas HoldEm Poker” is the most popular one at the end when t = T. (C) Number of users ni(T) sorted in
descending order for the 2,123 applications that have ni(T) > 0 (Zipf plot). (D) Probability density distribution P(n(T)) versus n(T) is fat-tailed. The dashed
line ∼n(T)−2 corresponds to the limit where the mean of the distribution diverges.
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subsequently discontinued this practice.) Consequently, users with
many Facebook friends are then, at least in principle, in a position
to influence a larger number of other users. In addition, everyone
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“best-seller” list. Although applications are free of charge, popular
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can be seen as cultural goods, and the different ways users process
local and global signals in choosing applications reflect their per-
sonal preferences, that is, the underlying heterogeneity of the
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on whether their dynamics are endogenous without external driv-
ers, or exogenous and driven externally, or both. These distinctions
are useful because they identify the fundamental characteristics of
the system, and hence enable systematic comparisons with other
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open to the challenge that they neglect equally important exoge-

nous effects such as marketing or mass advertising, and typically
trying to separate these two confounding factors is highly prob-
lematic. For instance, a reanalysis (27) of the classic diffusion
studies on how prescriptions for an antibiotic drug spread among
physicians in different communities (10, 11) suggests that mar-
keting efforts, in this context corresponding to external drivers, can
account for most of the observed behavior. Although in general
both endogenous and exogenous effects may be present in both
online and offline systems, as part of our research design we have
identified a system that does not have an exogenous component.
Instead, both local and global signals are generated endogenously
within the system, that is, there is no exogenous driver. This is in
contrast to classic innovation diffusion models (e.g., 28), which
feature one rate of contagion from within the group (local signal)
and another externally imposed (as opposed to endogenously
generated) rate of contagion from outside the group (global sig-
nal). Another important feature is that here the user has an active
role in deciding whether or not to adopt an application.
We downloaded the data from Facebook for all existing 2,720
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applications were introduced. These data consist of time series
ni(t) with i = 1,2,. . .,M = 2,720 and t = 1,2,. . .,T = 1,208 cor-
responding to the aggregate number of users who have appli-
cation i installed at time t (Fig. 1B). Data for 15 applications
were partly corrupted and were consequently omitted from the
analysis, leaving us with 2,705 applications, or 99% of the data.
These data cover 100% of the population of 50 million potential
adopters and 99% of all applications that may be adopted, in
practice giving us a complete view of system-wide adoptions.
Importantly, studying all of the applications avoids a selection
bias, which is generated by examining the trajectories of those
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Fig. 1. Facebook users and applications. (A) The users (round nodes) form a social network (solid lines) which influences their behavior in adopting
applications (hexagons). The dashed lines connecting users to applications indicate which applications each user has installed. (B) Number of users ni(t) as
a function of time t for four applications of which “Texas HoldEm Poker” is the most popular one at the end when t = T. (C) Number of users ni(T) sorted in
descending order for the 2,123 applications that have ni(T) > 0 (Zipf plot). (D) Probability density distribution P(n(T)) versus n(T) is fat-tailed. The dashed
line ∼n(T)−2 corresponds to the limit where the mean of the distribution diverges.
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ni(t) with i = 1,2,. . .,M = 2,720 and t = 1,2,. . .,T = 1,208 cor-
responding to the aggregate number of users who have appli-
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were partly corrupted and were consequently omitted from the
analysis, leaving us with 2,705 applications, or 99% of the data.
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Fig. 1. Facebook users and applications. (A) The users (round nodes) form a social network (solid lines) which influences their behavior in adopting
applications (hexagons). The dashed lines connecting users to applications indicate which applications each user has installed. (B) Number of users ni(t) as
a function of time t for four applications of which “Texas HoldEm Poker” is the most popular one at the end when t = T. (C) Number of users ni(T) sorted in
descending order for the 2,123 applications that have ni(T) > 0 (Zipf plot). (D) Probability density distribution P(n(T)) versus n(T) is fat-tailed. The dashed
line ∼n(T)−2 corresponds to the limit where the mean of the distribution diverges.
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Si,j(t) = 0 or 1

user j installs app i at time t

social influence = correlations for fixed app i

applications that spread successfully, as tends to be done in most
studies on social influence (29). Successful products in cultural
markets have been found to be orders of magnitude more pop-
ular than the average cultural product (7). This finding is also
manifest in the case of Facebook applications. The number of
users at the end of the time horizon, ni(T), sorted in descending
order is shown in Fig. 1C. For the 10 most popular applications,
these numbers vary between n(1)(T) ≈ 12 million and n(10)(T) ≈
4.6 million, whereas n(100)(T) ≈ 180,000 and n(1,000)(T) ≈ 1,300.
The probability density distribution for the number of applica-
tion installations (Fig. 1D) has a very fat tail and decays so
slowly that even its mean value diverges in the limit of infinite
system size.
Each new installation, in addition to increasing the overall user

base of the application and thus its global signal, also generates
a local signal, through which the adopter may in turn influence
the future behavior of his friends. Each installation thus acts as
a microscopic social stimulus and creates a form of positive
feedback in the system. Note that the observable behavior which
generates patterns of social influence in this case is restricted to
the adoption of an application, rather than its use. Given that the
users are part of a very large social network, the consequences of
adopting an application are not limited to a user’s immediate
neighborhood, but may percolate further in the network. This
underlines the importance of having data that reflect the behavior
of the entire system even if the underlying microscopic data are
not available. Whereas the impact of a single installation is ad-
mittedly minute, the superposition of the observed 104 million
application installations leaves behind a detectable footprint.
To study the effect of social influence, that is, the extent to which

the behavior of an individual (his installing an application) is re-
lated to the behavior of others (their installing the same applica-
tion), we turn to themethod of fluctuation scaling (FS). This allows
us to extract a key signature of the system’s behavior purely on the
basis of the above aggregate data. FS has been applied successfully
to a number of complex systems whose interacting elements par-
ticipate in some dynamic process. Examples of application domains
range from fluctuations in population sizes in ecology to fluctua-
tions in stock-trading activity in financial markets (30–32). Here we
outline how FS can be used in the current problem, and refer the
reader to SI Text for details. For a given application i, the act of
individual j regarding installation of the application is encoded by
the random variable Si,j(t), where Si,j(t) = 1 corresponds to him
installing the application at time t, and Si,j(t)= 0 corresponds to him
doing nothing. From the stochastic process point of view, one can
think of each individual tossing coins at every time step, one per
application, to decide whether he will install the given application.
In terms of this analogy, each individual has several coins, one per
application. The probability of individual j installing application i,
that is, the probability to obtain Si,j = 1 per time step, incorporates
many sources of uncertainty, including his disposition and the
properties of the application. The probability of obtaining Si,j = 1
therefore varies not only from person to person but also from ap-
plication to application. Social influence, operating through local
and global signals, is likely to render the coin tosses dependent for
any given application (Fig. 2 A and B). To measure the strength of
social influence, we define net activity fi(t) of application i at time t as

fiðtÞ≡ niðtÞ− niðt− 1Þ ¼ ∑
N

j¼1
Si; jðtÞ ¼ ∑

N − niðtÞ

k¼1
Si; jkðtÞ; [1]

which corresponds to the net increase in the number of
installations for application i between times t − 1 and t. It
can be expressed in terms of the individual constituent variables
as shown, where the first sum is taken over all N individuals
whereas the latter sum is taken over potential new installers,
with the subset of indices j1, j2,. . ., jN−ni(t) ∈{1,2,. . ., N} such

that Si,jk(τ) = 0 for τ < t. In terms of the above analogy, once
a user has installed a given application, he stops tossing the
particular coin corresponding to that application.
According to FS, the temporal average and SD of fi(t) are

related through the relationship σi ∼ μαi . This motivates us to
identify a region in which the relationship between log μk and
log σk for different values of k is linear. The value of the fluc-
tuation scaling exponent α is given by the slope of the line. Al-
though α lies in the rather narrow range [1/2, 1], its value is
crucial as an indicator of statistical coupling in the system (Fig. 2
A and B). If the behavior of a user is independent of the be-
havior of others, one would expect α = 1/2, whereas if her be-
havior is fully correlated with others one would expect α = 1
for all applications. We estimate the mean and SD of
the entire activity time series using hfii ≡ μi ¼ 1

Ti
∑Ti

t¼1 fiðtÞ and

σi ¼
!

1
Ti − 1∑

Ti
t¼1½fiðtÞ− hfii%2

"1=2
, where Ti is the application-

specific time series length reflecting the fact that different appli-
cations were introduced at different times.

Results
As shown in Fig. 2C, applications with log(μi) > log(μx) define the
collective regime governed by αC ≈ 0.85, which indicates strong
correlations among the constituent variables, that is, the un-
derlying “coin tosses.” Application installations above this point
are influenced by the behavior of others. Unexpectedly and
contrary to previous empirical studies of other systems (32),
breakpoint analysis (SI Text) shows that the system exhibits an-
other qualitatively different regime for the less popular applica-
tions. This individual regime with log(μi) < log(μx) has αI ≈ 0.55,
which is very close to the limiting case of α = 1/2, meaning that
application installations are nearly uncorrelated and social in-
fluence is negligible. The transition between the two regimes
takes place at approximately log(μx) = 0.36, which translates into
an average daily activity of 24 × 100.36 ≈ 55 new installations
a day. We emphasize that theoretical considerations guided our
choice to fit a linear function to the data in Fig. 2C as opposed to,
say, trying to find the best fit among a class of curvilinear func-
tions. Although it would be interesting to also resolve the precise
location and nature of the transition (sharp or continuous), we
are unable to make this distinction on the basis of the empirical
data. However, the central finding on the existence of two dif-
ferent regimes remains unaffected.
The interpretation of FS exponents in terms of correlations

assumes that the underlying stochastic process is stationary (32).
However, the fact that ni(t) increases over time demonstrates that
the system cannot be stationary. Phrased in terms of the earlier
analogy with coin tossing, the number of coins being tossed per
round decreases as those who have adopted an application stop
tossing the coin. The question then becomes whether the system
is sufficiently close to stationarity so that the fluctuation scaling
exponents can be given the above interpretation, that is, whether
the number of coins that are being tossed remains approximately
constant. Let us impose the stringent condition that the system is
sufficiently close to stationarity when at most 1% of users have
the application installed (meaning that 99% of users continue
tossing the coins, leaving the stochastic process almost unaltered).
We show in SI Text that even under this strict condition, 98% of
the time series are stationary. This also means that the scaling in
Fig. 2C holds for over two orders of magnitude above the cross-
over point. We conclude that the system is sufficiently stationary
so that the temporal fluctuations may indeed be given the
above interpretation.
As a simple explanatory hypothesis for the observed behavior,

one might suggest that the different scaling properties result
from applications having different lifetimes. To test this, we di-
vide the applications into three distinct groups based on their
time of introduction such that each group covers an equally long
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subsequently discontinued this practice.) Consequently, users with
many Facebook friends are then, at least in principle, in a position
to influence a larger number of other users. In addition, everyone
has access at all times to an all-inclusive listing of applications
ranked by their current global popularity, which acts as an effective
“best-seller” list. Although applications are free of charge, popular
applications have the advantage of being readily discoverable (low
search cost), and are more likely to be of higher quality both with
respect to reliability (exhaustively tested) and functionality (su-
perior features). The applications provide recreational value and
can be seen as cultural goods, and the different ways users process
local and global signals in choosing applications reflect their per-
sonal preferences, that is, the underlying heterogeneity of the
population.
In addition to the distinction between local and global signals, it

is important to classify systems into two separate categories based
on whether their dynamics are endogenous without external driv-
ers, or exogenous and driven externally, or both. These distinctions
are useful because they identify the fundamental characteristics of
the system, and hence enable systematic comparisons with other
systems. Epidemic spreading in a closed system is an example of an
endogenous process with local transmission, because the patho-
gens need to be passed from one person to another in close
physical proximity. Similarly, it is possible to model the spread of
innovations such as the uptake of new hybrid crops by farmers as
an endogenous social contagion process, and to try to distinguish
between different types of local processes that may underlie the
observed rate at which the innovation is adopted (26). However,
studies of social influence which focus on local and endogenous
processes such as word-of-mouth transmission are almost always
open to the challenge that they neglect equally important exoge-

nous effects such as marketing or mass advertising, and typically
trying to separate these two confounding factors is highly prob-
lematic. For instance, a reanalysis (27) of the classic diffusion
studies on how prescriptions for an antibiotic drug spread among
physicians in different communities (10, 11) suggests that mar-
keting efforts, in this context corresponding to external drivers, can
account for most of the observed behavior. Although in general
both endogenous and exogenous effects may be present in both
online and offline systems, as part of our research design we have
identified a system that does not have an exogenous component.
Instead, both local and global signals are generated endogenously
within the system, that is, there is no exogenous driver. This is in
contrast to classic innovation diffusion models (e.g., 28), which
feature one rate of contagion from within the group (local signal)
and another externally imposed (as opposed to endogenously
generated) rate of contagion from outside the group (global sig-
nal). Another important feature is that here the user has an active
role in deciding whether or not to adopt an application.
We downloaded the data from Facebook for all existing 2,720

applications between June 25 and August 14, 2007, shortly after
applications were introduced. These data consist of time series
ni(t) with i = 1,2,. . .,M = 2,720 and t = 1,2,. . .,T = 1,208 cor-
responding to the aggregate number of users who have appli-
cation i installed at time t (Fig. 1B). Data for 15 applications
were partly corrupted and were consequently omitted from the
analysis, leaving us with 2,705 applications, or 99% of the data.
These data cover 100% of the population of 50 million potential
adopters and 99% of all applications that may be adopted, in
practice giving us a complete view of system-wide adoptions.
Importantly, studying all of the applications avoids a selection
bias, which is generated by examining the trajectories of those
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Fig. 1. Facebook users and applications. (A) The users (round nodes) form a social network (solid lines) which influences their behavior in adopting
applications (hexagons). The dashed lines connecting users to applications indicate which applications each user has installed. (B) Number of users ni(t) as
a function of time t for four applications of which “Texas HoldEm Poker” is the most popular one at the end when t = T. (C) Number of users ni(T) sorted in
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time interval. We repeat the scaling plot by choosing randomly
300 applications from each group, with the red, green, and blue
colors indicating whether the application was introduced in the
first, second, or third interval (Fig. 3). Because any interval of x
values contains an approximately equal number of markers of
different colors, the time of introduction and, hence, application
lifetime do not explain its scaling properties.
It is also possible that network externalities are present for

some applications, meaning that the utility of having a particular
application increases with its user base. We identified 402 appli-
cations with log(μ) < −1 and 495 applications with log(μ) > 1
excluding applications close to the transition. From each subset,
we chose 50 applications at random and classified them manually
based on whether significant network externalities were present
or not, where they were deemed significant if the application was
used for repeated social interactions with friends. For example,
an application enabling one to play poker against friends clearly
has network externalities, whereas an application that places

a virtual lava lamp on the user’s profile does not. Only 10% of the
sampled applications with log(μ) < −1 had significant network
externalities associated with them, whereas 28% of the sampled
applications with log(μ) > 1 did. Because we find both types of
applications in both regimes, network externalities alone cannot
be the distinguishing factor, and in general are present less fre-
quently than one might expect.
Should the transition from one regime to the other be attributed

to the popularity of applications reaching a certain threshold value,
or should it be attributed to the structural properties of the system
and the dynamic behaviors it sustains? If the former is true, then
one might think that the transition corresponds to a phase tran-
sition or to the crossing of an epidemic threshold, essentially
a density threshold effect, resulting in an epidemic of popularity.
To isolate the effects of popularity, we construct rank-order-
preserving synthetic time series from the empirical ones. This de-
terministic process (apart from ties) cuts the empirical time series
into pieces and then recombines the pieces using a rank-based rule

Fig. 2. Fluctuation scaling. (A) The concept of FS can be illustrated by considering tossing coins in two ways (32). (i) We toss a group of k coins independently
with sides corresponding to 0 and 1 and let fk equal their sum. (ii) We toss a single coin with sides 0 and k, which corresponds to tossing k fully coupled coins.
(B) We perform the experiment several times and calculate the average hfki and SD σk of fk as shown in the schematic. In both cases hfki∼k; whereas σk∼

ffiffiffi
k

p
in i

but σk ∼ k in ii. Varying the value of k produces a series of points in the log μk, log σk plane. From the FS point of view, this simple example resembles Facebook
users making decisions on application adoption; the “coins” are now biased, reflecting individual heterogeneity, and the tosses are not independent but
coupled via local and global signals (SI Text). (C) Of the 2,705 Facebook applications in the empirical dataset, 2,562 with μi > 0 and σi > 0 are plotted here (SI
Text). Two qualitatively different regimes emerge, and are separated by a cross-over point located at log μx = 0.36. The first, individual regime is characterized
by the exponent αI ≈ 0.55, and the second, collective regime by αC ≈ 0.85. (D) The synthetic dataset consists of 2,705 time series, of which 2,163 have μi > 0 and
σi > 0. We now obtain a single regime characterized by the exponent αS ≈ 0.84. Note that in C and D the exponents lie between 1/2 and 1, corresponding to
the extremes of completely uncorrelated and correlated decisions of users to adopt applications.
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time interval. We repeat the scaling plot by choosing randomly
300 applications from each group, with the red, green, and blue
colors indicating whether the application was introduced in the
first, second, or third interval (Fig. 3). Because any interval of x
values contains an approximately equal number of markers of
different colors, the time of introduction and, hence, application
lifetime do not explain its scaling properties.
It is also possible that network externalities are present for

some applications, meaning that the utility of having a particular
application increases with its user base. We identified 402 appli-
cations with log(μ) < −1 and 495 applications with log(μ) > 1
excluding applications close to the transition. From each subset,
we chose 50 applications at random and classified them manually
based on whether significant network externalities were present
or not, where they were deemed significant if the application was
used for repeated social interactions with friends. For example,
an application enabling one to play poker against friends clearly
has network externalities, whereas an application that places

a virtual lava lamp on the user’s profile does not. Only 10% of the
sampled applications with log(μ) < −1 had significant network
externalities associated with them, whereas 28% of the sampled
applications with log(μ) > 1 did. Because we find both types of
applications in both regimes, network externalities alone cannot
be the distinguishing factor, and in general are present less fre-
quently than one might expect.
Should the transition from one regime to the other be attributed

to the popularity of applications reaching a certain threshold value,
or should it be attributed to the structural properties of the system
and the dynamic behaviors it sustains? If the former is true, then
one might think that the transition corresponds to a phase tran-
sition or to the crossing of an epidemic threshold, essentially
a density threshold effect, resulting in an epidemic of popularity.
To isolate the effects of popularity, we construct rank-order-
preserving synthetic time series from the empirical ones. This de-
terministic process (apart from ties) cuts the empirical time series
into pieces and then recombines the pieces using a rank-based rule

Fig. 2. Fluctuation scaling. (A) The concept of FS can be illustrated by considering tossing coins in two ways (32). (i) We toss a group of k coins independently
with sides corresponding to 0 and 1 and let fk equal their sum. (ii) We toss a single coin with sides 0 and k, which corresponds to tossing k fully coupled coins.
(B) We perform the experiment several times and calculate the average hfki and SD σk of fk as shown in the schematic. In both cases hfki∼k; whereas σk∼

ffiffiffi
k

p
in i

but σk ∼ k in ii. Varying the value of k produces a series of points in the log μk, log σk plane. From the FS point of view, this simple example resembles Facebook
users making decisions on application adoption; the “coins” are now biased, reflecting individual heterogeneity, and the tosses are not independent but
coupled via local and global signals (SI Text). (C) Of the 2,705 Facebook applications in the empirical dataset, 2,562 with μi > 0 and σi > 0 are plotted here (SI
Text). Two qualitatively different regimes emerge, and are separated by a cross-over point located at log μx = 0.36. The first, individual regime is characterized
by the exponent αI ≈ 0.55, and the second, collective regime by αC ≈ 0.85. (D) The synthetic dataset consists of 2,705 time series, of which 2,163 have μi > 0 and
σi > 0. We now obtain a single regime characterized by the exponent αS ≈ 0.84. Note that in C and D the exponents lie between 1/2 and 1, corresponding to
the extremes of completely uncorrelated and correlated decisions of users to adopt applications.
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(Materials and Methods). As shown in Fig. 2D, the transition dis-
appears for the synthetic data. Statistical tests also support the
existence of a single regime (SI Text) and, in addition, the Pear-
son’s linear correlation coefficient between log σ and log μ is 0.99.
The consequences of this are threefold. First, the lack of two
regimes for the synthetic data demonstrates that the transition
from one regime to the other for the empirical data cannot be
attributed solely to the popularity of an application exceeding
a certain threshold. Hence, the phenomenon is not analogous to
crossing an epidemic threshold. Second, it demonstrates that the
collective (correlated) regime does not result from the system
becoming saturated with users of a given application that would
then induce correlations between the behaviors of the individuals.
This is because all of the synthetic time series obey the same scaling
relation also for small values of log(μ) (corresponding to a dilute
limit), where the system is far from being saturated. Third, the
synthetic regime has an exponent αC ≈ 0.84, which is very close to
αC ≈ 0.85 that characterizes the collective regime for empirical
data. This shows that we can recover the exponent of the collective
regime by assuming that the future popularity of an application is
driven by its current popularity, a finding that has also been used to
predict popularity of online content (33).

Discussion
We have harnessed data on Facebook applications to study the role
of social influence on the dynamics of popularity in an endogenous
online system. The way the platform, Facebook, and the cultural
products, Facebook applications, have been set up in this self-con-
tained systemguarantees that the agents are subject to both local and
global signals of influence.Althoughour analysis cannot separate the
contribution of local and global signals to the resulting behavior, it is
nevertheless useful to characterize the fundamental structure of the
information that individuals can access because this enables com-
parisons with other systems (34). We have shown that the studied
online system exhibits a collective and individual regime, and argued
that the emergence of the two regimes is an inherent property of the

system. Because each regime is characterized by a single fluctuation
scaling exponent, the strength of social influence is approximately
constant across each regime. Consequently, the extent of social in-
fluence becomes discretized: Either there is virtually no influence or,
alternatively, the strengthof influence is that givenby theexponentof
the collective regime. This suggests that social influence assumes
a binary, on–off nature in the system. Had we only monitored the
more successful (high-μ) applications, asone isusually constrained to
do in theofflineworld,wewouldhavebeenable toobserveonly (part
of) the collective regime. However, it is unclear what would happen
in the offline world if equivalent experimental conditions could
be replicated.
Our ability to identify the two distinct regimes exhibited by the

system does not, however, allow us to infer or rule out specific
microlevel social mechanisms. This would require us to analyze
individual-level data, rather than aggregate time-series data where
distinct Facebook applications are the units of analysis. There is
strong empirical evidence for diffusion in social systems (35–37),
but the precise underlying mechanism can vary from case to case.
Recent work by Young (26) has made an important theoretical
contribution by showing how the shape of cumulative adoption
curves can be used to differentiate between social contagion, social
influence, and social learning processes. However, to keep the
mathematical treatment tractable, Young’s approach assumes that
there is perfect mixing of past and potential future adopters, and
hence no underlying social network. This clearly does not apply in
our case, as well as in many other offline and online social systems.
Further theoretical and empirical advances that take into account
network characteristics are required before distinct behaviors at
the aggregate level can be mapped into different processes at the
individual level.
Web-based interactive systems have the potential to transform

our understanding of collective human behavior (38). We believe
that our finding on the existence of the two regimes may well
generalize to other online systems. The move of an increasing
number of our activities to the online world has endowed users
with the power of participation. Familiar examples include the
online book retailer Amazon and the online DVD rental service
Netflix, both of which allow their users to rate products and,
consequently, influence their future popularity. Although some
books and films in these systems are certainly highly advertised
by their producers, they arguably stand for only a small fraction
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Fig. 3. Effect of application lifetime on scaling. Visual inspection shows that
any interval of log-μ values contains a roughly equal number of red, green, and
blue markers, indicating that the time of introduction and, hence, application
lifetime are not related to its scaling properties. The histograms at the bottom
of the panel show exactly how many applications from each of the three
periods (red, green, blue) fall in the [−2, −1), [−1,0), [0, 1), [1, 2), and [2, 3)
intervals, demonstrating clearly that there is no age trend in the scaling plot.
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Fig. 4. Schematic of the construction of the synthetic time series ~niðtÞ. (A) The
empirical data consist of t = 1,. . .,7 observations for three applications. The
data points have been connected with dashed black lines to guide the eye.
For the most popular application at time t − 1, the change in the number of
users between t − 1 and t is indicated by the height of the vertical red bar at
time t, which corresponds to ~f 1ðtÞ in the text. Similarly, ~f 2ðtÞ and ~f 3ðtÞ are in-
dicated by the green and blue bars, respectively. An easy way to understand
the process is first to compute the difference in the number of users for all
applications given by fi(t) = ni(t)− ni(t− 1) and then color the difference based
on ri(t − 1), the rank of the application at time t − 1. (B) The synthetic time
series are seeded by the initial values taken from the empirical data such
that ~n1ð1Þ ¼ n□ð1Þ; ~n2ð1Þ ¼ n⋆ð1Þ, and ~n3ð1Þ ¼ n∘ð1Þ of the empirical data and
they are constructed by adding together the difference bars of the same
color. Overlapping bars have been shifted slightly horizontally for clarity of
presentation.
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synthetic data

(Materials and Methods). As shown in Fig. 2D, the transition dis-
appears for the synthetic data. Statistical tests also support the
existence of a single regime (SI Text) and, in addition, the Pear-
son’s linear correlation coefficient between log σ and log μ is 0.99.
The consequences of this are threefold. First, the lack of two
regimes for the synthetic data demonstrates that the transition
from one regime to the other for the empirical data cannot be
attributed solely to the popularity of an application exceeding
a certain threshold. Hence, the phenomenon is not analogous to
crossing an epidemic threshold. Second, it demonstrates that the
collective (correlated) regime does not result from the system
becoming saturated with users of a given application that would
then induce correlations between the behaviors of the individuals.
This is because all of the synthetic time series obey the same scaling
relation also for small values of log(μ) (corresponding to a dilute
limit), where the system is far from being saturated. Third, the
synthetic regime has an exponent αC ≈ 0.84, which is very close to
αC ≈ 0.85 that characterizes the collective regime for empirical
data. This shows that we can recover the exponent of the collective
regime by assuming that the future popularity of an application is
driven by its current popularity, a finding that has also been used to
predict popularity of online content (33).

Discussion
We have harnessed data on Facebook applications to study the role
of social influence on the dynamics of popularity in an endogenous
online system. The way the platform, Facebook, and the cultural
products, Facebook applications, have been set up in this self-con-
tained systemguarantees that the agents are subject to both local and
global signals of influence.Althoughour analysis cannot separate the
contribution of local and global signals to the resulting behavior, it is
nevertheless useful to characterize the fundamental structure of the
information that individuals can access because this enables com-
parisons with other systems (34). We have shown that the studied
online system exhibits a collective and individual regime, and argued
that the emergence of the two regimes is an inherent property of the

system. Because each regime is characterized by a single fluctuation
scaling exponent, the strength of social influence is approximately
constant across each regime. Consequently, the extent of social in-
fluence becomes discretized: Either there is virtually no influence or,
alternatively, the strengthof influence is that givenby theexponentof
the collective regime. This suggests that social influence assumes
a binary, on–off nature in the system. Had we only monitored the
more successful (high-μ) applications, asone isusually constrained to
do in theofflineworld,wewouldhavebeenable toobserveonly (part
of) the collective regime. However, it is unclear what would happen
in the offline world if equivalent experimental conditions could
be replicated.
Our ability to identify the two distinct regimes exhibited by the

system does not, however, allow us to infer or rule out specific
microlevel social mechanisms. This would require us to analyze
individual-level data, rather than aggregate time-series data where
distinct Facebook applications are the units of analysis. There is
strong empirical evidence for diffusion in social systems (35–37),
but the precise underlying mechanism can vary from case to case.
Recent work by Young (26) has made an important theoretical
contribution by showing how the shape of cumulative adoption
curves can be used to differentiate between social contagion, social
influence, and social learning processes. However, to keep the
mathematical treatment tractable, Young’s approach assumes that
there is perfect mixing of past and potential future adopters, and
hence no underlying social network. This clearly does not apply in
our case, as well as in many other offline and online social systems.
Further theoretical and empirical advances that take into account
network characteristics are required before distinct behaviors at
the aggregate level can be mapped into different processes at the
individual level.
Web-based interactive systems have the potential to transform

our understanding of collective human behavior (38). We believe
that our finding on the existence of the two regimes may well
generalize to other online systems. The move of an increasing
number of our activities to the online world has endowed users
with the power of participation. Familiar examples include the
online book retailer Amazon and the online DVD rental service
Netflix, both of which allow their users to rate products and,
consequently, influence their future popularity. Although some
books and films in these systems are certainly highly advertised
by their producers, they arguably stand for only a small fraction
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Fig. 3. Effect of application lifetime on scaling. Visual inspection shows that
any interval of log-μ values contains a roughly equal number of red, green, and
blue markers, indicating that the time of introduction and, hence, application
lifetime are not related to its scaling properties. The histograms at the bottom
of the panel show exactly how many applications from each of the three
periods (red, green, blue) fall in the [−2, −1), [−1,0), [0, 1), [1, 2), and [2, 3)
intervals, demonstrating clearly that there is no age trend in the scaling plot.
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Fig. 4. Schematic of the construction of the synthetic time series ~niðtÞ. (A) The
empirical data consist of t = 1,. . .,7 observations for three applications. The
data points have been connected with dashed black lines to guide the eye.
For the most popular application at time t − 1, the change in the number of
users between t − 1 and t is indicated by the height of the vertical red bar at
time t, which corresponds to ~f 1ðtÞ in the text. Similarly, ~f 2ðtÞ and ~f 3ðtÞ are in-
dicated by the green and blue bars, respectively. An easy way to understand
the process is first to compute the difference in the number of users for all
applications given by fi(t) = ni(t)− ni(t− 1) and then color the difference based
on ri(t − 1), the rank of the application at time t − 1. (B) The synthetic time
series are seeded by the initial values taken from the empirical data such
that ~n1ð1Þ ¼ n□ð1Þ; ~n2ð1Þ ¼ n⋆ð1Þ, and ~n3ð1Þ ¼ n∘ð1Þ of the empirical data and
they are constructed by adding together the difference bars of the same
color. Overlapping bars have been shifted slightly horizontally for clarity of
presentation.
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time interval. We repeat the scaling plot by choosing randomly
300 applications from each group, with the red, green, and blue
colors indicating whether the application was introduced in the
first, second, or third interval (Fig. 3). Because any interval of x
values contains an approximately equal number of markers of
different colors, the time of introduction and, hence, application
lifetime do not explain its scaling properties.
It is also possible that network externalities are present for

some applications, meaning that the utility of having a particular
application increases with its user base. We identified 402 appli-
cations with log(μ) < −1 and 495 applications with log(μ) > 1
excluding applications close to the transition. From each subset,
we chose 50 applications at random and classified them manually
based on whether significant network externalities were present
or not, where they were deemed significant if the application was
used for repeated social interactions with friends. For example,
an application enabling one to play poker against friends clearly
has network externalities, whereas an application that places

a virtual lava lamp on the user’s profile does not. Only 10% of the
sampled applications with log(μ) < −1 had significant network
externalities associated with them, whereas 28% of the sampled
applications with log(μ) > 1 did. Because we find both types of
applications in both regimes, network externalities alone cannot
be the distinguishing factor, and in general are present less fre-
quently than one might expect.
Should the transition from one regime to the other be attributed

to the popularity of applications reaching a certain threshold value,
or should it be attributed to the structural properties of the system
and the dynamic behaviors it sustains? If the former is true, then
one might think that the transition corresponds to a phase tran-
sition or to the crossing of an epidemic threshold, essentially
a density threshold effect, resulting in an epidemic of popularity.
To isolate the effects of popularity, we construct rank-order-
preserving synthetic time series from the empirical ones. This de-
terministic process (apart from ties) cuts the empirical time series
into pieces and then recombines the pieces using a rank-based rule

Fig. 2. Fluctuation scaling. (A) The concept of FS can be illustrated by considering tossing coins in two ways (32). (i) We toss a group of k coins independently
with sides corresponding to 0 and 1 and let fk equal their sum. (ii) We toss a single coin with sides 0 and k, which corresponds to tossing k fully coupled coins.
(B) We perform the experiment several times and calculate the average hfki and SD σk of fk as shown in the schematic. In both cases hfki∼k; whereas σk∼

ffiffiffi
k

p
in i

but σk ∼ k in ii. Varying the value of k produces a series of points in the log μk, log σk plane. From the FS point of view, this simple example resembles Facebook
users making decisions on application adoption; the “coins” are now biased, reflecting individual heterogeneity, and the tosses are not independent but
coupled via local and global signals (SI Text). (C) Of the 2,705 Facebook applications in the empirical dataset, 2,562 with μi > 0 and σi > 0 are plotted here (SI
Text). Two qualitatively different regimes emerge, and are separated by a cross-over point located at log μx = 0.36. The first, individual regime is characterized
by the exponent αI ≈ 0.55, and the second, collective regime by αC ≈ 0.85. (D) The synthetic dataset consists of 2,705 time series, of which 2,163 have μi > 0 and
σi > 0. We now obtain a single regime characterized by the exponent αS ≈ 0.84. Note that in C and D the exponents lie between 1/2 and 1, corresponding to
the extremes of completely uncorrelated and correlated decisions of users to adopt applications.
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FIGURE 1 

Hourly Message Volume 
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FIGURE 2 

Aggregate Message Volume vs. Trading Volume 
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Development of message and trading volume
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