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Figure 3.13: A karate club studied by Wayne Zachary [421] — a dispute during the course
of the study caused it to split into two clubs. Could the boundaries of the two clubs be
predicted from the network structure?

A second example, in Figure 3.13, is a picture of the social network of a karate club studied

by Wayne Zachary [421] and discussed in Chapter 1: a dispute between the club president

(node 34) and the instructor (node 1) led the club to split into two. Figure 3.13 shows the

network structure, with the membership in the two clubs after the division indicated by the

shaded and unshaded nodes. Now, a natural question is whether the structure itself contains

enough information to predict the fault line. In other words, did the split occur along a weak

interface between two densely connected regions? Unlike the network in Figure 3.12, or in

some of the earlier examples in the chapter, the two conflicting groups here are still heavily

interconnected. So to identify the division in this case, we need to look for more subtle

signals in the way in which edges between the groups effectively occur at lower “density”

than edges within the groups. We will see that this is in fact possible, both for the definitions

we consider here as well as other definitions.

A. A Method for Graph Partitioning

Many different approaches have been developed for the problem of graph partitioning, and

for networks with clear divisions into tightly-knit regions, there is often a wide range of

methods that will prove to be effective. While these methods can differ considerably in their

specifics, it is useful to identify the different general styles that motivate their designs.
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(vi) Define the between-ness of a node u, written β(u), as
the number of shortest paths of G containing u - that is to
say:

β(u) =
�

x∈V ϕx(u)
ϕx(u) =

�
y∈V |{γ ∈ sp(x, y) | u ∈ γ}|

Show:

ϕx(u) = σ(x, u) +
�

v∈u+ ϕx(v) · σ(x, u)/σ(x, v)

First we note that ϕx(u) is the number of shortest paths
from x that contain u. This number is a some of two con-
tributions: the number of shortest paths from x to u, and
the number of shortest paths from x via u to some v. The
former term is σ(x, u). The latter term can be decomposed
based on the next node v taken by any shortest path - where
v is a child of u; each such v contributes the total number
of shortest paths from x via v, that is φx(v) multiplied by
the fraction of these paths that come from u - which to say
σ(x, u)/σ(x, v).

(vii) Deduce a bottom-up algorithm to compute β(u). De-
duce an upper bound on the complexity of the computation
of nodes of maximal betweeness.

For every x, build BF (x) and compute for each node y the
number σ(x, y) using the top-down formula of subquestion
(iv); then use the bottom-up formula just above, to com-
pute ϕx(u); to obtain β(u), sum over x; the complexity is
linear in the number of edges and linear in the number of
nodes, so quadratic in G, hence cubic if one wants to pick
up nodes of maximal betweeness.

The between-ness can increase subsequent to an edge dele-
tion (a cut).

We can define a discount version with r ∈ [0, 1):

β�(e) =
�

x,y∈(V2);n

p(e ∈ γ | γ ∈ p(x, y), |γ| = n) · rn (2)

Another variant: probability that a uniform diffusion from
x reaches y by going through e? is that tractable? it seems
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(b) Tightly-knit regions and their nested structure

Figure 3.14: In many networks, there are tightly-knit regions that are intuitively apparent, and they can
even display a nested structure, with smaller regions nesting inside larger ones.

The Notion of Betweenness. To motivate the design of a divisive method for graph

partitioning, let’s think about some general principles that might lead us to remove the 7-8

edge first in Figure 3.14(a).

A first idea, motivated by the discussion earlier in this chapter, is that since bridges and

local bridges often connect weakly interacting parts of the network, we should try removing

these bridges and local bridges first. This is in fact an idea along the right lines; the problem

is simply that it’s not strong enough, for two reasons. First, when there are several bridges,

it doesn’t tell us which to remove first. As we see in Figure 3.14(a), where there are five

bridges, certain bridges can produce more reasonable splits than others. Second, there can

be graphs where no edge is even a local bridge, because every edge belongs to a triangle —

and yet there is still a natural division into regions. Figure 3.15 shows a simple example,

where we might want to identify nodes 1-5 and nodes 7-11 as tightly-knit regions, despite

Thursday, 18 November 2010



74 CHAPTER 3. STRONG AND WEAK TIES

2

3

5 7

9

10

8

6

41 11

Figure 3.15: A network can display tightly-knit regions even when there are no bridges or
local bridges along which to separate it.

the fact that there are no local bridges to remove.

However, if we think more generally about what bridges and local bridges are doing,

then we can arrive at a notion that forms the central ingredient of the Girvan-Newman

method. Local bridges are important because they form part of the shortest path between

pairs of nodes in different parts of the network — without a particular local bridge, paths

between many pairs of nodes may have to be “re-routed” a longer way. We therefore define

an abstract notion of “traffic” on the network, and look for the edges that carry the most of

this traffic. Like crucial bridges and highway arteries, we might expect these edges to link

different densely-connected regions, and hence be good candidates for removal in a divisive

method.

We define our notion of traffic as follows. For each pair of nodes A and B in the graph

that are connected by a path, we imagine having one unit of fluid “flow” along the edges from

A to B. (If A and B belong to different connected components, then no fluid flows between

them.) The flow between A and B divides itself evenly along all the possible shortest paths

from A to B: so if there are k shortest paths from A and B, then 1/k units of flow pass

along each one.

We define the betweenness of an edge to be the total amount of flow it carries, count-

ing flow between all pairs of nodes using this edge. For example, we can determine the

betweenness of each edge in Figure 3.14(a) as follows.

• Let’s first consider the 7-8 edge. For each node A in the left half of the graph, and

each node B in the right half of the graph, their full unit of flow passes through the

7-8 edge. On the other hand, no flow passing between pairs of nodes that both lie in

the same half uses this edge. As a result, the betweenness of the 7-8 edge is 7 · 7 = 49.

• The 3-7 edge carries the full unit of flow from each node among 1, 2, and 3 to each
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(d) Step 4

Figure 3.17: The steps of the Girvan-Newman method on the network from Figure 3.15.

structure — indeed, because carrying a large amount of flow suggests a position at the

interface between tightly-knit groups, there are clear relationships of betweenness with our

earlier discussions of nodes that span structural holes in a social network [86].

The Girvan-Newman Method: Successively Deleting Edges of High Betweenness.

Edges of high betweenness are the ones that, over all pairs of nodes, carry the highest volume

of traffic along shortest paths. Based on the premise that these are the most “vital” edges

for connecting different regions of the network, it is natural to try removing these first. This

is the crux of the Girvan-Newman method, which can now be summarized as follows.

(1) Find the edge of highest betweenness — or multiple edges of highest betweenness, if

there is a tie — and remove these edges from the graph. This may cause the graph

to separate into multiple components. If so, this is the first level of regions in the

partitioning of the graph.

(2) Now recalculate all betweennesses, and again remove the edge or edges of highest be-

tweenness. This may break some of the existing components into smaller components;

if so, these are regions nested within the larger regions.

(...) Proceed in this way as long as edges remain in graph, in each step recalculating all

betweennesses and removing the edge or edges of highest betweenness.

Thus, as the graph falls apart first into large pieces and then into smaller ones, the method

naturally exposes a nested structure in the tightly-knit regions. In Figures 3.16 and 3.17
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3.5 Agents’ beliefs

4 prep man: chap 1 - Girvan-Newman

Let G be a finite and connected graph, with set of nodes
V . For x, y nodes of G, we write d(x, y) for the distance of
x to y (equivalently from y to x).

Write BF (x) for the ranked graph induced by a breadth-
first search from x in G, where each node y in V is mapped
to d(x, y) ∈ N its distance to x. Write sp(z, y) for set of
shortest paths from z to y in G.

- Show that neighbours in G are at most one rank remote
in BF (x).

Show that deleting all edges (y, z) such that d(x, y) =
d(x, z) (edges of constant rank) in BF (x) obtains a directed
acyclic graph BF−(x).

Since, d(x, y)+d(y, z) ≤ d(x, z), if d(y, z) = 1, then |d(x, y)−
d(x, z)| ≤ 1. Directedness and acyclicity follow from the
fact that all paths are now strictly rank-increasing.

Write ri(z, y) for set of paths from z to y in BF (x) with
a strictly increasing rank; equivalently, the set of directed
paths from z to y in BF−(x).

Write:
- y− for the set of immediate parents of y in BF−(x)
- z+ for the set of immediate successors of z in BF−(x)

We have y− = ∅ iff y is the root x of BF−(x), z+ = ∅ iff
z is a leaf in BF−(x).

- Set σ(x, y) = |ri(x, y)|, and show that this is the number
of shortest paths from x to y.

Show that σ(z, z) = 1, and, conversely, σ(z, y) > 0, σ(y, z) >
0 ⇒ z = y.

Every shortest path from x increases its distance from x at
each step, so is in ri(x, y); conversely, any path in ri(x, y)
has length the distance d(x, y), so is shortest. The rest is
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clear.

(iii) Show that σ(x, y) > 0, and σ(x, z) ≤ σ(x, y) if z ∈ y−.

The first statement follows from connectedness; the second
one is because any shortest path to z will extend to a short-
est to its child y.

(iv) Show that σ verifies:

σ(x, x) = 1
σ(x, y) =

�
z∈y− σ(x, z) if x �= y

Conversely - to the preceding subquestion - any shortest
path to y must go through exaxctly one shortest path to
one of y’s parents.

(v) [This sub-question is not necessary for the rest of the
question] Write BF (x, d) for the set of nodes with rank d
in BF (x).

Suppose given a decomposition of d(x, y) as d(x, y) = d1 +
d2, show that one has a bijection:

ri(x, y) �
�

z∈BF (x,d1)
ri(x, z)× ri(z, y)

Show this works also for the extreme cases d1 = 0, d1 =
d(x, y).

Deduce that the decomposition of the preceding questions
generalises for any split d1 + d2 = d(x, y):

σ(x, y) =
�

z∈BF (x,d1)
σ(x, z)σ(z, y)

with the preceding case corresponding to the split d(x, y)−
1 + 1 = d(x, y).

Pick 0 < d1 < d(x, y), any shortest path to y must go
through exactly one node z in BF (x, d1) - this decompo-
sition is trivially injective, and surjective as composition
preserves being strictly rank-increasing. This gives the iso-
morphism from which the formula follows. Unlike the step-
wise formula obtained at the preceding subquestion this
works also for d1 = 0, as the only z in BF (x, 0) is x; it also
works for d2 = 0, as the only z in BF (x, d(x, y)) for which
σ(z, y) �= 0 is y.
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(vi) Define the between-ness of a node u, written β(u), as
the number of shortest paths of G containing u - that is to
say:

β(u) =
�

x∈V ϕx(u)
ϕx(u) =

�
y∈V |{γ ∈ sp(x, y) | u ∈ γ}|

Show:

ϕx(u) = σ(x, u) +
�

v∈u+ ϕx(v) · σ(x, u)/σ(x, v)

First we note that ϕx(u) is the number of shortest paths
from x that contain u. This number is a some of two con-
tributions: the number of shortest paths from x to u, and
the number of shortest paths from x via u to some v. The
former term is σ(x, u). The latter term can be decomposed
based on the next node v taken by any shortest path - where
v is a child of u; each such v contributes the total number
of shortest paths from x via v, that is φx(v) multiplied by
the fraction of these paths that come from u - which to say
σ(x, u)/σ(x, v).

(vii) Deduce a bottom-up algorithm to compute β(u). De-
duce an upper bound on the complexity of the computation
of nodes of maximal betweeness.

For every x, build BF (x) and compute for each node y the
number σ(x, y) using the top-down formula of subquestion
(iv); then use the bottom-up formula just above, to com-
pute ϕx(u); to obtain β(u), sum over x; the complexity is
linear in the number of edges and linear in the number of
nodes, so quadratic in G, hence cubic if one wants to pick
up nodes of maximal betweeness.

The between-ness can increase subsequent to an edge dele-
tion (a cut).

We can define a discount version with r ∈ [0, 1):

β�(e) =
�

x,y∈(V2);n

p(e ∈ γ | γ ∈ p(x, y), |γ| = n) · rn (2)

Another variant: probability that a uniform diffusion from
x reaches y by going through e? is that tractable? it seems
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is between-ness a good notion?
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Do topological models provide good information about electricity infrastructure vulnerability?
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Mean distance between nodes

Connectivity loss

C = 1 − <n(x,g)/n(g)>

n(g) = total number of generators
n(x,g) = number of generators connected to x

Blackout sizes 
as calculated from a model of cascading failure in a 
power system

turb the networks. Results and conclusions are provided in
Secs. IV and V.

II. VULNERABILITY MEASURES

The method used in this vulnerability analysis is to take
a variety of power networks and subject them to random
failures and directed attacks. This section describes the met-
rics used to compare the response of the power networks to
attacks and failures. The first two measures come from ex-
isting complex network literature !most prominently4,18". The
third is a model of power grid failure.

Our first vulnerability measure is characteristic path
length !0!L!"", which is the average distance among
node pairs in a graph. In Ref. 18, path length !network di-
ameter" was suggested as a measure of network vulnerability
because as more components fail nodes become more dis-
tant, which may indicate that flows within the network are
inhibited.

The second measure is connectivity loss !0!C!1",
which was proposed in Ref. 4 as a way to incorporate the
locations of sources !generators" and sinks !loads" into a
measure of network vulnerability. Connectivity loss is de-
fined: C=1− #ng

i /ng$i, where ng is the number of generators
in the network and ng

i is the number of generators that can be
reached by traveling from node i across nonfailed links.

The third measure, which does not appear in the existing
network science literature, is blackout sizes as calculated
from a model of cascading failure in a power system. While
a perfect model of cascading failure would accurately repre-
sent the continuous dynamics of rotating machines, the dis-
crete dynamics associated with relays that disconnect
stressed components from the network, the nonlinear alge-
braic equations that govern flows in the network, and the
social dynamics of operators working to mitigate the effects
of system stress, all power system models simplify these
dynamics to some extent. Unlike simple topological metrics,
our model does capture the effects of Ohm’s and Kirchhoff’s
laws, by using linear approximations of the nonlinear power-
flow equations.19 Similar models have been used to study
cascading failure in a number of recent papers.15,20,21

In our model, when a component fails, the “DC power-
flow” equations19 are used to calculate changes in network
flow patterns. In the DC approximation the net power in-
jected into a node !generation minus load: Pi= Pg,i− Pd,i" is
equal to the total amount of power flowing to neighboring
nodes through links !transmission lines or transformers"

Pi = %
j=1

n

!#i − # j"/Xij , !1"

where n is the number of nodes in the system, #i is the
voltage phase angle at node i, and Xij is the series reactance
of the link!s" between nodes i and j. When there is no link
between i and j, Xij =". Each link has a relay that removes it
from service if its current exceeds 50% of its rated limit for
5 s or more. The trip-time calculations are weighted such that
the relays will trip faster given greater overloads. While it is
true that overcurrent relays are not universally deployed in
high-voltage power systems, they provide a good approxima-
tion of other failure mechanisms that are common, such as
lines sagging into underlying vegetation !an important con-
tributor to the 14 August 2003 North American blackout22".
After a component fails, the model recalculates the power-
flow and advances to the time at which the next component
will fail, or quits if no further components are overloaded. If
a component failure separates the grid into unconnected sub-
grids, the following process is used to rebalance supply and
demand. If the imbalance is small, such that generators can
adjust their output by not more than 10% and arrive at a new
supply/demand balance, this balance is achieved through
generator set-point adjustments. If this adjustment is insuffi-
cient, the smallest generator in the subgrid is shut down until
there is an excess of load. If there is excess load after these
generator adjustments, the simulator curtails enough load to
balance supply and demand. This balancing process approxi-
mates the process that automatic controls and operators fol-
low to balance supply and demand during extreme events.
The size of the blackout !S" is reported at the end of the
simulation as the total amount of load curtailed.

III. ATTACK-VECTORS

In order to measure power network vulnerability, we test
the response of 41 electricity networks to a variety of exog-
enous disturbance vectors !attacks or random failures". In
each case we measure the relationship between disturbance
size and disturbance cost using the three vulnerability met-
rics described above. To compare our results with prior re-
search, five disturbance vectors are simulated. These are de-
scribed as follows.

The first vector is random failure, in which nodes
!buses" are selected for removal by random selection, with an
equal failure probability for each node. This approach simu-
lates failure resulting from natural causes !e.g., storms" or an
unintelligent attack. For each network, we test its response to
20 unique sets of random failures, with 10 nodes in each set.
These sets are initially selected from a uniform distribution,
and then applied incrementally !one node, then two nodes,
etc.".

The second vector is degree attack, in which nodes are
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FIG. 1. !Color online" An illustration of the difference between a topologi-
cal !nearest-neighbor" model of cascading failure and one based on Kirch-
hoff’s laws. !a" Node 2 fails, which means that its power-flow !load" must be
redistributed to functioning nodes. !b" In many topological models of cas-
cading failure !e.g., Ref. 9", load from failed components is redistributed to
nearest-neighbors !nodes 1 and 3". !c" In an electrical network current re-
routes by Kirchhoff’s laws, which in this case means that the power that
previously traveled through node 2 is rerouted through nodes 5 and 6. In
addition, by Kirchhoff’s laws, node 3 ends up with no power-flow.
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removed incrementally, starting with the highest degree !con-
nectivity" nodes. This strategy represents an intelligent at-
tack, in which the attacker chooses to disable nodes with a
large number of neighboring nodes.

The third vector is a maximum-traffic attack, in which
nodes are removed incrementally starting with those that
transport the highest amounts of power. We use the term
“traffic” to differentiate this measure from “load,” which, in
the power system literature, typically describes the quantity
of power being consumed at a node. Thus, traffic !T" is simi-
lar to the measures described as load in Refs. 4 and 9. The
following measure of node-loading is used to select
maximum-traffic nodes:

Ti = #Pi# + $
j=1

n

#!!i − ! j"/Xij# , !2"

where #Pi# is the absolute value of net power injection into
node i by generators and loads %from Eq. !1"&, and the term
on the right is the sum of the flows into and out of the bus
through transmission lines.

The fourth vector is minimum-traffic attack, which is the
inverse of the max-traffic attack. This vector is used for com-
parison with the conclusions in Ref. 9, which argues that
failures at low-traffic !load" nodes lead to larger blackouts
than failures at high-traffic nodes.

The fifth vector is betweenness attack, in which nodes
are removed incrementally, starting with those that have the
highest betweenness centrality !the number of shortest paths
that pass through a node2". This vector was used in Ref. 4 to
approximate an attack on high-traffic !load" nodes and was
reported to result in disproportionately large failures.

IV. RESULTS

To compare the vulnerability measures, we report results
from the simulation of random failures and directed attacks
for a common test system !IEEE 300 bus/node test case,23

with the branch limits from Ref. 24" and 40 of 136 control
areas from within the North American Eastern Interconnect
!EI". The EI data come from a 2005 North American Electric
Reliability Corporation power-flow planning case, to which
the authors have been granted access for the purpose of this
research.25 The 40 control areas analyzed were selected be-
cause of their proximate sizes !336–1473 nodes". Together
they represent 29 261 of 49 907 nodes !buses" in the Eastern
Interconnect data. Both the EI data and the 300 node test
case include locations of sources !generators" and sinks
!loads", along with the power output or consumption for each
source or sink. The link !branch" data include end points,
reactances !Xij", and flow limits for each link. State data,
such as phase angles !!i", are calculated from the DC power-
flow. In some of the cases the test cases did not initially
result in a balance between supply and demand. In order to
achieve an initial balance, we decreased the supply or de-
mand, whichever was initially greater, uniformly until a bal-
anced was achieved. In a few areas the initial calculated flow
on links exceeded the rated flow limits. In these cases we
increased the link flow limits until the base-case power-flows
were 10% below the limits. Actual locations have been de-

leted from our data set, such that these results are not linked
to physical locations in the U.S. electricity infrastructure.

The upper panels of Figs. 2 and 3 show how path lengths
!L" change as nodes are removed from the test networks. In
both the IEEE 300 node network and the EI areas path
lengths resulting from degree-based, max-traffic, and be-
tweenness attacks is greater than the average L from random
failures. Min-traffic attacks do not substantially differ from
random failures in this measure.

The middle panels of Figs. 2 and 3 illustrate the differ-
ence between the connectivity losses !C" from directed at-
tacks and C from random failure. From this semitopological
perspective, power grids are notably more vulnerable to di-
rected attacks than to random failure, and are thus similar to
scale-free networks !see Ref. 4 for a similar result".

The blackout size results !lower panels of Figs. 2 and 3"
also indicate that power networks are notably more vulner-
able to directed !degree-based, max-traffic, and betweenness-
based" attack than they are to random failure. Max-traffic
attacks on ten nodes produce blackouts with an average size
of 72%. Random failure of ten nodes results in an average

FIG. 2. !Color online" Simulated response of the IEEE 300 bus network to
directed attacks. The top panel shows the change in characteristic path
lengths !L" as the number of failures increases. The middle panel shows
connectivity loss !C" and the bottom panel shows the size of the resulting
blackout both as a function of the number of components failed. The results
for random failures are averages over 20 trials. The trajectories shown are
differences between the attack-vector results and the random failure aver-
ages. Shading indicates "1# for the random failures.
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(a) Before new edges form.
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(b) After new edges form.

Figure 3.2: If we watch a network for a longer span of time, we can see multiple edges forming

— some form through triadic closure while others (such as the D-G edge) form even though

the two endpoints have no neighbors in common.

the fact that the B-C edge has the effect of “closing” the third side of this triangle. If

we observe snapshots of a social network at two distinct points in time, then in the later

snapshot, we generally find a significant number of new edges that have formed through this

triangle-closing operation, between two people who had a common neighbor in the earlier

snapshot. Figure 3.2, for example, shows the new edges we might see from watching the

network in Figure 3.1 over a longer time span.

The Clustering Coefficient. The basic role of triadic closure in social networks has

motivated the formulation of simple social network measures to capture its prevalence. One

of these is the clustering coefficient [320, 411]. The clustering coefficient of a node A is

defined as the probability that two randomly selected friends of A are friends with each

other. In other words, it is the fraction of pairs of A’s friends that are connected to each

other by edges. For example, the clustering coefficient of node A in Figure 3.2(a) is 1/6

(because there is only the single C-D edge among the six pairs of friends B-C, B-D, B-E,

C-D, C-E, and D-E), and it has increased to 1/2 in the second snapshot of the network in

Figure 3.2(b) (because there are now the three edges B-C, C-D, and D-E among the same

six pairs). In general, the clustering coefficient of a node ranges from 0 (when none of the

node’s friends are friends with each other) to 1 (when all of the node’s friends are friends

with each other), and the more strongly triadic closure is operating in the neighborhood of

the node, the higher the clustering coefficient will tend to be.

triadic closures ...

Clustering Coefficient(A) = fraction of A’s friends who are friends
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50 CHAPTER 3. STRONG AND WEAK TIES

BA

ED

C

Figure 3.3: The A-B edge is a bridge, meaning that its removal would place A and B in

distinct connected components. Bridges provide nodes with access to parts of the network

that are unreachable by other means.

Reasons for Triadic Closure. Triadic closure is intuitively very natural, and essentially

everyone can find examples from their own experience. Moreover, experience suggests some

of the basic reasons why it operates. One reason why B and C are more likely to become

friends, when they have a common friend A, is simply based on the opportunity for B and C

to meet: if A spends time with both B and C, then there is an increased chance that they

will end up knowing each other and potentially becoming friends. A second, related reason

is that in the process of forming a friendship, the fact that each of B and C is friends with

A (provided they are mutually aware of this) gives them a basis for trusting each other that

an arbitrary pair of unconnected people might lack.

A third reason is based on the incentive A may have to bring B and C together: if A is

friends with B and C, then it becomes a source of latent stress in these relationships if B

and C are not friends with each other. This premise is based in theories dating back to early

work in social psychology [217]; it also has empirical reflections that show up in natural but

troubling ways in public-health data. For example, Bearman and Moody have found that

teenage girls who have a low clustering coefficient in their network of friends are significantly

more likely to contemplate suicide than those whose clustering coefficient is high [48].

3.2 The Strength of Weak Ties

So how does all this relate to Mark Granovetter’s interview subjects, telling him with such

regularity that their best job leads came from acquaintances rather than close friends? In

fact, triadic closure turns out to be one of the crucial ideas needed to unravel what’s going

on.

bridges

local bridges
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Figure 3.4: The A-B edge is a local bridge of span 4, since the removal of this edge would
increase the distance between A and B to 4.

Bridges and Local Bridges. Let’s start by positing that information about good jobs is

something that is relatively scarce; hearing about a promising job opportunity from someone

suggests that they have access to a source of useful information that you don’t. Now consider

this observation in the context of the simple social network drawn in Figure 3.3. The person

labeled A has four friends in this picture, but one of her friendships is qualitatively different

from the others: A’s links to C, D, and E connect her to a tightly-knit group of friends who

all know each other, while the link to B seems to reach into a different part of the network.

We could speculate, then, that the structural peculiarity of the link to B will translate into

differences in the role it plays in A’s everyday life: while the tightly-knit group of nodes A, C,

D, and E will all tend to be exposed to similar opinions and similar sources of information,

A’s link to B offers her access to things she otherwise wouldn’t necessarily hear about.

To make precise the sense in which the A-B link is unusual, we introduce the following

definition. We say that an edge joining two nodes A and B in a graph is a bridge if deleting

the edge would cause A and B to lie in two different components. In other words, this edge

is literally the only route between its endpoints, the nodes A and B.

Now, if our discussion in Chapter 2 about giant components and small-world properties

taught us anything, it’s that bridges are presumably extremely rare in real social networks.

You may have a friend from a very different background, and it may seem that your friendship

is the only thing that bridges your world and his, but one expects in reality that there will

interpreting between-ness: where does info come from; different time scales and steady states?

no friends in common

distance contraction, curvature?

low cc

compute the derivative of gossip upper bounds?

what is propagating?

philosophical stake: fine time-structure of information propagation
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Figure 3.5: Each edge of the social network from Figure 3.4 is labeled here as either a strong
tie (S) or a weak tie (W ), to indicate the strength of the relationship. The labeling in the

figure satisfies the Strong Triadic Closure Property at each node: if the node has strong ties

to two neighbors, then these neighbors must have at least a weak tie between them.

be other, hard-to-discover, multi-step paths that also span these worlds. In other words, if

we were to look at Figure 3.3 as it is embedded in a larger, ambient social network, we would

likely see a picture that looks like Figure 3.4.

Here, the A-B edge isn’t the only path that connects its two endpoints; though they may

not realize it, A and B are also connected by a longer path through F , G, and H. This kind

of structure is arguably much more common than a bridge in real social networks, and we

use the following definition to capture it. We say that an edge joining two nodes A and B

in a graph is a local bridge if its endpoints A and B have no friends in common — in other

words, if deleting the edge would increase the distance between A and B to a value strictly

more than two. We say that the span of a local bridge is the distance its endpoints would

be from each other if the edge were deleted [190, 407]. Thus, in Figure 3.4, the A-B edge is

a local bridge with span four; we can also check that no other edge in this graph is a local

bridge, since for every other edge in the graph, the endpoints would still be at distance two if

the edge were deleted. Notice that the definition of a local bridge already makes an implicit

connection with triadic closure, in that the two notions form conceptual opposites: an edge

is a local bridge precisely when it does not form a side of any triangle in the graph.

Local bridges, especially those with reasonably large span, still play roughly the same

strong triadic closedness

strong ties (the stronger links, corresponding to friends), and weak ties
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Strong Triadic Closure says 
the B-C edge must exist, but 
the definition of a local bridge 

says it cannot.

Figure 3.6: If a node satifies Strong Triadic Closure and is involved in at least two strong

ties, then any local bridge it is involved in must be a weak tie. The figure illustrates the

reason why: if the A-B edge is a strong tie, then there must also be an edge between B and

C, meaning that the A-B edge cannot be a local bridge.

We’re going to justify this claim as a mathematical statement – that is, it will follow

logically from the definitions we have so far, without our having to invoke any as-yet-

unformalized intuitions about what social networks ought to look like. In this way, it’s

a different kind of claim from our argument in Chapter 2 that the global friendship network

likely contains a giant component. That was a thought experiment (albeit a very convinc-

ing one), requiring us to believe various empirical statements about the network of human

friendships — empirical statements that could later be confirmed or refuted by collecting

data on large social networks. Here, on the other hand, we’ve constructed a small num-

ber of specific mathematical definitions — particularly, local bridges and the Strong Triadic

Closure Property — and we can now justify the claim directly from these.

The argument is actually very short, and it proceeds by contradiction. Take some net-

work, and consider a node A that satisfies the Strong Triadic Closure Property and is involved

in at least two strong ties. Now suppose A is involved in a local bridge — say, to a node

B — that is a strong tie. We want to argue that this is impossible, and the crux of the

argument is depicted in Figure 3.6. First, since A is involved in at least two strong ties,

and the edge to B is only one of them, it must have a strong tie to some other node, which

we’ll call C. Now let’s ask: is there an edge connecting B and C? Since the edge from A to

B is a local bridge, A and B must have no friends in common, and so the B-C edge must

not exist. But this contradicts Strong Triadic Closure, which says that since the A-B and

local bridge on A (2 s) is weak <= STC
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