
1

MAN course

course page: www.inf.ed.ac.uk/teaching/courses/man

Mondays and Thursdays 5:10-6:00 pm - WRB G.04

next class Monday Sep 27 !

course strictly based on “networks, crowds, markets”:
www.cs.cornell.edu/home/kleinber/networks-book/

coursework (week 5) 30%
exam 70%

background: elementary probabilities & calculus

http://www.inf.ed.ac.uk/web/teaching/courses/man
http://www.inf.ed.ac.uk/web/teaching/courses/man
http://www.cs.cornell.edu/home/kleinber/networks-book/
http://www.cs.cornell.edu/home/kleinber/networks-book/

2

1-line
summary

socio, techno, eco, bio things happening on/structured by a network

3

social networks (friendship, acquaintance, coboardism, co-
affiliation, etc), ecological networks, web pages, citation networks,
intra-organisational communication (eg Enron’s emails), Internet
physical structure, power grids, financial and economical markets,
neural systems, intra-celullar networks, etc.

N. Schwartz NYT May 1st
2010

4

5

local
node/
agent

global
property

modelonline
 learning

control
evaluation

feed back, inform, signal,
enforce, threaten, payoff

sensing

control policy
info distribution

move, talk, cooperate,
trade, cite, infect,

bind, like/dislike, recommend

markets with
exogenous events

[ncw ch22]

- agents have beliefs (expectations)

- agents take actions under uncertainty about
the outcome (bet on A, buy/sell stock)

- decisions are functions of their beliefs and
of their relation to risk

- a market turns the set of actions into a price
and hence a payoff (aggregation)

outcomes are independent of agent choices
(ie we assume exogeneous outcomes)

6

2 horse race A and B

- agents have beliefs pA, pB

- agents take actions rA, rB
where rA = fraction of w bet on A
so rA + rB = 1

- decisions are functions of beliefs, payoffs
and relation to risk

- a market turns the set of actions into agents
pay-off using odds oA, oB

outcomes are independent of agent choices (ie there is no
cheating unlike with eg sumo fighting)

7

odds:

oA = 3-to-1 := one gets 3£ for a successful 1£ bet

equivalently, a bet of 1/3£ gets 1£ if successful

odds?

1/oA is the price of a contract which is worth 1£ if A wins

8

market
odds

oA, oB

agent
agent

agent
agent

agent
agents

agent
- beliefs pA, pB
- wealth w
- risk function

bet
rA, rB

return
oA rA
oB rB

9

what comes next

- how does an agent play?

- how does the market decide the odds?

- what if we repeat the game, what becomes of the wealth
distribution?

- then we criticize the model

10

agent strategy

a belief is pA, pB probability on {A,B}

a strategy rA, rB is a function of beliefs, payoffs

reasonable things we can ask of any strategy:
drA/dpA ≥0
if pA=1 then rA=1

how does an agent turn a belief into a strategy?

we introduce a utility function
to express how much 1£ is worth, or
how dear 1£ is, to the agent

11

utility = log

why log?
- it is concave: u(x) increases at a decreasing rate
- log (k * x) - log (x) is independent of x
- (often it generalises)

12

payoff = oA rA w if A wins
 oB rB w if B wins

mean utility
= mean log(payoff)
= pA * log(rA oA w)+ pB * log(rB oB w)
= pA * log(rA)+ pB * log(rB) +
 pA * log(oA)+ pB * log(oB) + log w

in the second equation the italicized terms are
independent of the agent strategy rA, rB; we need to
max the first part pA * log(rA)+ pB * log(rB)

NB: this depends on the believed probability pA, pB

we assume here that agent wants to maximise its mean
utility, that is we are looking for:

argmax(rA,rB).(pA * log(rA)+ pB * log(rB))

which (as we will see) does not depend on w or oA,oB

mean (believed) utility

13

risk/utility
optimization

x axis = rA = fraction bet on A
y axis mean utility
drawn for various values of belief:
pA = 0.25, 0.5, and 0.75

in general:
argmax util(rA,rB) = pA, pB

pA * log(rA)+ pB * log(rB)

14

d/d rA (pA * log(rA)+ pB * log(rB)) =
pA/rA - pB/rB

so the optima strategy is:

argmax = pA, pB

and max believed mean utility difference is

pA * log(pA*oA)+ pB * log(pB*oB)

we have subtracted the initial utility log(w)

the bettor bets his beliefs

NB: as expected, we do have
drA/dpA ≥ 0
if pA=1 then rA=1

15

multi-agent vs the market

we now assume N agents with:

- wealth wn
- beliefs pAn, pBn
- all agents with the same utility function: log

how does the market turn the bets into odds?

16

the market receives the total bet
w = sum wn

of which on A, B:
wA = sum rAn * wn
wB = sum rBn * wn
wA + wB = w

total due:
oA wA = oA sum pAn * wn if A wins
oB wB = oB sum pBn * wn if B wins

subject to (supposing the market is free):

oA wA = oB wB = w

market: what are the odds?

which we can also write in terms of price-of-1£:

1/oA = wA/w = sum rAn * (wn/w)
1/oB = wB/w = sum rBn * (wn/w)

17

it follows that the strategy

rA, rB = 1/oA, 1/oB

guarantees a risk-free, 1-to-1, payoff

so the assumption that the agents bet all their
wealth w is not a constraint

a risk-free strategy

1/oA = wA/w
1/oB = wB/w

1/oA + 1/oB = 1

18

- everyone shares the same belief pA: 1/oA = pA
- agent n dominates, ie fn ~ 1: 1/oA ~ pAn

what are the prices 1/oA, 1/oB?

assuming the optimal strategy pAn, pBn for agent n:
1/oA = sumn pAn * wn/w
1/oB = sumn pBn * wn/w

define the wealth fraction fn := wn/w
1/oA = sumn pAn * fn

1/oB = sumn pBn * fn

19

reconsider:

1/oA = sumn pAn * wn/w

the price is the weighted average of the “market beliefs”, or the
“market prediction” about the outcome

caveat

this is only true with «loggy» agents; else it also depends on the
agents’ utilities/risk functions

wealth dynamics

what if the game is repeated?

21

- X a finite set (say)
- p ∈ GX a hidden probability on X
- P = ⊕n fn pn ∈ GGX a belief represented as a probability on GX
- s an observation on multisets over X

P(pn) = fn - or more rigorously P({pn}) = fn

NB: a belief is a prob on a prob now!

By multiplication, we have

µP(A) = sumn fn pn(A)

a majority vote where fn is the weight
accorded to pn in the prediction

Bayesian learning: believing

22

- we sample repeatedly from the hidden p, which gives us the
observation s above

- we modify the weights in the majority vote of P in order to get
closer to the real p:

s·fn/fn = pn(s)/µP(s) (1)

this defines a new or updated:

P = ⊕n fn pn ⇒ s· P = ⊕n (s·fn) pn

Bayesian learning: learning

P is called the prior, s·P the posterior.

NB: the support remains unchanged by the update

23s·s’·P = (s’s)·P - ie chunking does not matter

p or µP are not really defined on multisets, but we can
promote/extend them using GX → G(multiset(X))

p(s) = prodx in X p(x)s(x)

where s(x) is the number of occurrences of x in s

in both formulas we are abusing notation

s·fn/fn = pn(s)/µP(s)
s·fn/s·fm = pn(s)/pm(s) * fn/fm

NB:

one can rewrite (1) - equivalently as (2)

s·fn/s·fm = pn(s)/pm(s) * fn/fm

25

belief P = ⊕n fn pn
outcome s
updating:
s·fn/fn =)pn(s)/µP(s) (1)

the invariance under permutation of the observation
s, say ABABAB -> AAABBB follows from (2)

s·fn/s·fm = pn(s)/pm(s) * fn/fm

since pn(s) and pm(s) are invariant under permutation
(because we assume that the successive outcomes are
independent)

Similarly the invariance under rechunking is
easy to see with (2) as

s1s2·fn/s1s2·fm
= pfn(s1s2)/pfm(s1s2) * fn/fm
= pfn(s1)/pfm(s1) * pfn(s2)/pfm(s2) * fn/fm

This defines a Markov chain (MC) on GGX defined as

Q(P,s·P) = p(s)

that is to say we are ‘walking’ randomly on GGX, so the
kernel Q ∈ [GGX;GGGX] might have a steady state in GGGX - but
in fact the interesting limit is a “point-mass” in GGX

assuming p=pn is the real probability

s·P → p as |s| → ∞
as

log(s·fn/s·fm) ∼ |s| × KL(p, pm) ≥ 0

where KL is the relative entropy of p and pm (aka the
Kullback-Leibler divergence)

Bayesian learning: converging

27

http://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence
http://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence

Plot��1 � x � Log�x�, �x, 0, 10��
Input interpretation:

plot �1� x� log�x� x � 0 to 10

Plot:

2 4 6 8 10

2

4

6

8

10

12

14

Generated by Wolfram|Alpha (www.wolframalpha.com) on September 26, 2010 from Champaign, IL.

© Wolfram Alpha LLC—A Wolfram Research Company
1

http://www.wolframalpha.com/input/?i=Plot[x-1-Log[x],{x,+0,+10}]

KL

1 Bayesian learning

1.1 Ingredients

- X a measurable space,

- p ∈ GX a hidden probability,

- P = ⊕ifipi ∈ G2X a belief represented as a probability on GX
- s an observation on X�

s can seen as a multiset if one wishes as the order does not matter - observations are assumed

independent; we write s(x) for the number of x’s in s, and define p(s) :=
�

X p(x)s(x) (this is

using a map GX → GX� - some sort of distributive law?).

Define for two probabilities on the same finite support (or q � p)

KL(p, q) =
�

x p(x) log(p(x)/q(x))

KL(p, q) ≥ 0 and KL(p, q) = 0 only if p = q.

Because log x ≤ x− 1 so −
�

i pi log(qi/pi) ≥ −
�

i pi(qi/pi − 1) = 0.

Besides log x = x− 1 iff x = 1.

Or by Jensen’s inequality:− log is convex so
�
− log(dq/dp) dp ≥ − log(

�
dq/dp dp) = − log(

�
dq) =

0; so we could use any concave thing in place of log.

By multiplication we obtain µP (A) =
�

i fipi(A) - a sort of majority vote where fi is the weight

accorded to pi in the prediction, ie P = ⊕fipi; in general the multiplication µP is defined for

f ∈ L(X) as: �f, µP �X := �λp.�f, p�X , P �GX .

1.2 Belief update

The idea for learning is that we sample repeatedly from the hidden p, and modify the weights in

the majority vote of P in order to make the sample likelier (not really; en fait c’est le theoreme

de Bayes mais je ne comprends pas encore).

Specifically, one increases fi the prediction weight of pi if it ranks s above the majority: define

a new P � = ⊕if �
ipi as:

f �
i/fi = pi(s)/µP (s) (1)

Note that the support of P � remains the same as f �
i > 0; also, one can see that µP (s) is the only

normalisation factor for f �
i ∝ fi · pi(s).

Everywhere we should write fi = P ({pi}) = P .

Terminology: P is the prior, P � the posterior.

To accentuate the similarity with the Bayes formula:

P (pi | s) · µP (s) = P (s | pi) · P (pi | ∅)

f �
i · µP (s) = P (s | pi) · fi

1 Bayesian learning

1.1 Ingredients

- X a measurable space,

- p ∈ GX a hidden probability,

- P = ⊕ifipi ∈ G2X a belief represented as a probability on GX
- s an observation on X�

s can seen as a multiset if one wishes as the order does not matter - observations are assumed

independent; we write s(x) for the number of x’s in s, and define p(s) :=
�

X p(x)s(x) (this is

using a map GX → GX� - some sort of distributive law?).

Define for two probabilities on the same finite support (or q � p)

KL(p, q) =
�

x p(x) log(p(x)/q(x))

KL(p, q) ≥ 0 and KL(p, q) = 0 only if p = q.

Because log x ≤ x− 1 so −
�

i pi log(qi/pi) ≥ −
�

i pi(qi/pi − 1) = 0.

Besides log x = x− 1 iff x = 1.

Or by Jensen’s inequality:− log is convex so
�
− log(dq/dp) dp ≥ − log(

�
dq/dp dp) = − log(

�
dq) =

0; so we could use any concave thing in place of log.

By multiplication we obtain µP (A) =
�

i fipi(A) - a sort of majority vote where fi is the weight

accorded to pi in the prediction, ie P = ⊕fipi; in general the multiplication µP is defined for

f ∈ L(X) as: �f, µP �X := �λp.�f, p�X , P �GX .

1.2 Belief update

The idea for learning is that we sample repeatedly from the hidden p, and modify the weights in

the majority vote of P in order to make the sample likelier (not really; en fait c’est le theoreme

de Bayes mais je ne comprends pas encore).

Specifically, one increases fi the prediction weight of pi if it ranks s above the majority: define

a new P � = ⊕if �
ipi as:

f �
i/fi = pi(s)/µP (s) (1)

Note that the support of P � remains the same as f �
i > 0; also, one can see that µP (s) is the only

normalisation factor for f �
i ∝ fi · pi(s).

Everywhere we should write fi = P ({pi}) = P .

Terminology: P is the prior, P � the posterior.

To accentuate the similarity with the Bayes formula:

P (pi | s) · µP (s) = P (s | pi) · P (pi | ∅)

f �
i · µP (s) = P (s | pi) · fi

http://www.wolframalpha.com/input/?i=Plot%5B-1+%2B+x+-+Log%5Bx%5D,+%7Bx,+0,+10%7D%5D
http://www.wolframalpha.com/input/?i=Plot%5B-1+%2B+x+-+Log%5Bx%5D,+%7Bx,+0,+10%7D%5D

an MC type of transport of P? should write the steady state of K), so K ∈ [G2X;G3X] has a
steady state in G3X - but in fact it seems it is a point in GX see below.

Note that for pi(s) > 0:
s · δpi(pj) = δpi(pj)pj(s)/pi(s) = 0
s · δpi(pi) = δpi(pi) = 1

in other words K(δpi , δpi) = 1 (unless pi(s) = 0 for some s, but then the update should be f �
i = 0

which does not seem to be part of the scheme). So there are terminal components in this MC; so
its is probably important that the support never shrinks for ergodicity of the exploration process.

The way samples are chunked does not matter as updates form a monoid action (transitivity);
suppose s = s2s1 (reverse notation):

s1 · fi/fi = pi(s1)/(
�

fipi(s1))
s2 · s1 · fi/s1 · fi = pi(s2)/(

�
(s1 · fi)pi(s2))

so using pi(s) = pi(s1)pi(s2):

s2 · s1 · fi/fi = pi(s)/(
�

fipi(s1))(
�

(s1 · fi)pi(s2))
(s2s1) · fi/fi = pi(s)/(

�
fipi(s))

so

(s2s1) · fi/s2 · s1 · fi = (
�

fipi(s1))(
�

(s1 · fi)pi(s2))/(
�

fipi(s))
= (

�
fipi(s1))(

�
fipi(s)/(

�
fipi(s1)))/(

�
fipi(s)) = 1!

so to return

p(s) = K(P, s2s1 · P) = K(s1 · P, s2s1 · P)K(P, s1 · P) = p(s2s1)

1.3 Convergence using KL

Compare the density updates, we have s · fi/s · fj = fipi(s)/fjpj(s), so in log form:

log(s · fi/s · fj) = log(fi/fj) + log(pi(s)/pj(s))

then for |s| → +∞:

1/|s| log(s · fi/s · fj) ∼
�

x∈X(s(x)/|s|) log(pi(x)/pj(x)) by independence of trials
∼

�
x∈X p(x) log(pi(x)/pj(x)) by SLN

where s(x) is the number of x in s.

Supposing pi = p is the hidden real probability:

log(s · fi/s · fj) ∼ |s|×KL(p, pj) ≥ 0

Then if i �= j, KL(p, pj) > 0 which implies s · fj → 0; and hence lim s · fi → 1.

So s · P → δp as |s| →∞ and we learn eventually the true probability.

Somehow KL(p, pj) measures the per sample rate at which the j assumption trails the true one
(in log scale); the rate of separation so to speak.

convergence proof

- justifies the update rule (1), as it does
eventually find the solution

- KL is a natural tool to assess convergence;
there is more to say here ...

market payoffs is formally identical to
learning!

updated wealth per agent:

wn’ = oA pAn wn if A wins
wn’ = oB pBn wn if B wins

so the new wealth ratios for agents m and n is

fm’/fn’ = pAm/pAn fm/fn if A wins
fm’/fn’ = pBm/pBn fm/fn if B wins

which exactly as in the Bayesian update formula (2)
with P = ⊕ fn pn and s = A wins or B wins
which implies that fn → 1 for the agent that knows the true pA

31

market
odds

oA, oB

agent
agent

agent
agent

agent
agents

agent
- beliefs pA, pB
- wealth w
- risk function

bet
rA, rB

return
oA rA
oB rB

what about the updated price-of-1£?
1/oA’ = sumn pAn * fn’ = µP’(A)

so 1/oA → pA the true price

more generally, the market is selecting for
agents with more accurate beliefs (in the KL
sense)

the true p does not need to be in the support of
P (ie no player needs to know the true
probability)

you can think of the betting market as an
interpretation of Bayesian learning as well - let
your beliefs bet concurrently ...

reflections
 on the model

why maximising mean utility?

why belief is a probability?

why utility is a log - see above

how are the odds fixed in advance?
market microstructure - does not matter with “loggy” agents
but in general?

where do beliefs come from? information? do not agents
derive their beliefqs also from looking at other
agents?

what if the market has a fee?

how does that compare with stock markets?

33

