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The Spread of Behavior in an Online Social Network Experiment

2

How does the structure of social networks affect the 
spread of behavior?

high clustering vs. long range jumps?

what is the most efficient and for what (eg social 
reinforcement)

 D. Centola
Science 329, 1194-1197(2010)    
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the artificial synthetic network
a clustered 6d-lattice vs random network 

(single trial: N = 128 = 16 * 8, Z = 6 homogeneous degree)
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same degree sequence: in both graphs degree is the same - so locally the 
same for an agent

different clustering/cliquishness: in the lattice red nodes are & share 
neighbors with each other, not in the randomly rewired network - how would 
you rewire/randomize the left graph?

rewiring
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Any differences in the dynamics of diffusion between the 
two conditions can be attributed to the effects of network 
topology

3 other factors to consider ...

homophily
geographic proximity
interpersonal affect 
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which displayed her own user avatar and health interests, as well as the avatars and health 

interests of her health buddies.  Figure S2 shows a health buddy page.  Because of the 

similarity of the networks across conditions within a given trial of the study, subjects’ health 

buddy pages showed the same number of health buddies regardless of which condition they 

were randomly assigned to.   

 

 

Figure S2.  Screenshot of a health buddy page.   

 

 Once a subject completed the sign-up process, she received a confirmation email 

asking her to verify that her email address was working.  This allowed me to make sure that 
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Adoption of behavior 
faster & stronger on 
lattice (circles) 
than on random 

network (triangles) 

6 independent trials

note adoption:
- final fraction 
- speed
- stochasticity
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not alter the topology in which they were em-
bedded (e.g., by making new ties). In both condi-
tions, each participant was randomly assigned
to occupy a single node in one network. The
occupants of the immediately adjacent nodes in
the network (i.e., the network neighbors) consti-
tuted a participant’s health buddies (13). Each
node in a social network had an identical number
of neighbors as the other nodes in the network,
and participants could only see the immediate
neighbors to whom they were connected.

Consequently, the size of each participant’s
social neighborhood was identical for all par-
ticipants within a network and across conditions.
More generally, every aspect of a participant’s
experience before the initiation of the diffusion
dynamics was equivalent across conditions, and
the only difference between the conditions was
the pattern of connectedness of the social net-

works in which the participants were embedded.
Thus, any differences in the dynamics of diffu-
sion between the two conditions can be attri-
buted to the effects of network topology.

There are four advantages of this experi-
mental design over observational data. (i) The
present study isolates the effects of network
topology, independent of frequently co-occurring
factors such as homophily (3, 16), geographic
proximity (17), and interpersonal affect (4, 18),
which are easily conflated with the effects of
topological structure in observational studies
(2, 3, 11). (ii) I study the spread of a health-
related behavior that is unknown to the partici-
pants before the study (13), thereby eliminating
the effects of nonnetwork factors from the dif-
fusion dynamics, such as advertising, availability,
and pricing, which can confound the effects of
topology on diffusion when, for example, the

local structure of a social network correlates
with greater resources for learning about or
adopting an innovation (11, 19). (iii) This study
eliminates the possibility for social ties to change
and thereby identifies the effects of network
structure on the dynamics of diffusion without
the confounding effects of homophilous tie
formation (1, 20). (iv) Finally, this design allows
the same diffusion process to be observed
multiple times, under identical structural condi-
tions, thus allowing the often stochastic process of
individual adoption (21) to be studied in a way
that provides robust evidence for the effects of
network topology on the dynamics of diffusion.

I report the results from six independent trials
of this experimental design, each consisting of a
matched pair of network conditions. In each pair,
participants were randomized to either a clustered-
lattice network or a corresponding random net-
work (13). This yielded 12 independent diffusion
processes. Diffusion was initiated by selecting a
random “seed node,” which sent signals to its net-
workneighbors encouraging them to adopt a health-
related behavior—namely, registering for a health
forum Web site (13). Every time a participant
adopted the behavior (i.e., registered for the health
forum), messages were sent to her health buddies
inviting them to adopt. If a participant had mul-
tiple health buddies who adopted the behavior,
then she would receive multiple signals, one from
each neighbor. Themore neighbors who adopted,
themore reinforcing signals a participant received.
The sequence of adoption decisions made by the
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Fig. 2. Time series showing the adoption of a health behavior spreading through clustered-lattice (solid
black circles) and random (open triangles) social networks. Six independent trials of the study are
shown, including (A) N = 98, Z = 6, (B to D) N = 128, Z = 6, and (E and F) N = 144, Z = 8. The success
of diffusion was measured by the fraction of the total network that adopted the behavior. The speed of
the diffusion process was evaluated by comparing the time required for the behavior to spread to the
greatest fraction reached by both conditions in each trial.
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Fig. 3. Hazard ratios for adoption for individuals
receiving two, three, and four social signals. The
hazard ratio g indicates that the likelihood of
adoption increases by a factor of g for each ad-
ditional signal k, compared to the likelihood of
adoption from receiving k – 1 signals. The 95%
confidence intervals from the Cox proportional
hazards model are shown by error bars. The effect
of an additional signal on the likelihood of adop-
tion is significant if the 95% confidence interval
does not contain g = 1 (13).
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the effect of reinforcement

likelihood of adoption 
after n=2,3,4 social 
signals/likelihood of 
adoption after 
receiving 1 social 
signal 
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members of each social network provides a pre-
cise time series of the spread of the behavior
through the population. It also provides an exact
record of the number of signals required for in-
dividuals to adopt the behavior. The starting time
(time = 0) for each diffusion process corresponds
to the instant when the seed node was activated
and the initial signals were sent. For each trial, the
diffusion process was allowed to run for 3 weeks
(~1.8 million seconds). To test for the possible
effects of population size (N) and degree (Z, the
number of health buddies each person had) on the
diffusion dynamics, I used three different versions
of the experiment: (i) N = 98, Z = 6; (ii) N = 128,
Z = 6; and (iii) N = 144, Z = 8 (13). The modest
range of population sizes tested and the corre-
spondingly narrow range of degrees were due to
the challenges of recruiting large numbers of peo-
ple simultaneously. Among the networks I used,
there were no effects of population size (13).

The results show that network structure has a
significant effect on the dynamics of behavioral
diffusion. Surprisingly, the topologies with greater
clustering and a larger diameter were much more
effective for spreading behavior. Figure 2 shows
the time series generated by the six indepen-
dent trials of the experiment. Adoption typically
spread to a greater fraction of the population in
the clustered networks (solid black circles) than

in the random networks (open triangles). On
average, the behavior reached 53.77% of the
clustered networks, whereas only 38.26% of
the population adopted in the random networks
(13). I also found that the behavior diffused
more quickly in the clustered networks than in
the random networks. The average rate of dif-
fusion in the clustered networks (0.2820 × 10–3

nodes/s) was more than four times faster than
that of the random condition (0.0643 × 10–3

nodes/s). Differences in both the success and
the rate of diffusion between network conditions
are statistically significant (P < 0.01 using the
Wilcoxon rank sum–Mann-Whitney U test) (13).

The experimental findings were qualitatively
the same across different network and neighbor-
hood sizes. However, networks with a greater
degree (Z = 8) performed better than those with
a lower degree (Z = 6). Although this finding is
consistent with the hypothesis that more redun-
dant ties between neighborhoods can improve
the global spread of behavior, it may also indicate
that other topological features, such as degree
and density, are relevant factors affecting be-
havioral diffusion (2, 7). This suggests impor-
tant avenues for future research.

At the individual level, the results (Fig. 3)
show that redundant signals significantly in-
creased the likelihood of adoption; social rein-

forcement from multiple health buddies made
participants much more willing to adopt the be-
havior. Figure 3 compares the baseline likelihood
of adoption after receiving one social signal to
the increased likelihood of adoption for nodes
receiving second, third, and fourth reinforcing
signals. Participants were significantly more likely
to adopt after receiving a second signal than
after receiving only one signal (P < 0.001 using
the Cox proportional hazards model). Receiving
a third signal also significantly increased the like-
lihood of adoption, but with a smaller marginal-
effect size (P < 0.05, Cox proportional hazards
model) (13). Additional signals had no significant
effect. This can be attributed to the attenuation of
the sample size as the number of signals increased.

A secondary, but important, issue related to
adoption is the level of commitment that individ-
uals have to a behavior once they have adopted it.
To investigate the effects of social reinforcement
on individuals’ level of engagement with the
health forum, I compared the number of return
visits to the forum after registering, for adopters
grouped by the number of social signals that they
received (Fig. 4) (participants could not receive
additional signals once they had registered).
Figure 4 shows pairwise comparisons of the
number of return visits for adopters receiving
only one signal (solid lines) versus those receiv-
ing two to five signals (dashed lines in panels A
to D, respectively). Though less than 15% of
adopters receiving one signal made a return visit
to the forum, more than 30% of participants re-
ceiving two signals made return visits, and 40%
of participants receiving three signals made at least
one return visit. Pairwise statistical comparisons
between group one and groups two through five
are all significant (P < 0.01 for all four compar-
isons, using the Kolmogorov-Smirnov test) (13),
indicating that participants who received more than
one social signal were significantly more likely to
return to the health forum than those who only
received a single signal. This suggests that there
was a significant effect of social reinforcement on
participants’ level of engagement with the adopted
behavior.

As with all experiments, design choices that
aided my control of the study also put constraints
on the behaviors that I could test. A key limitation
of my design is that, unlike in my experiment,
adopting a new health behavior is often extreme-
ly difficult in the real world. To adopt behaviors
such as getting a vaccination, going on a diet,
starting an exercise routine, or getting a screening,
people may be required to pay the costs of time,
deprivation, or even physical pain. Because of
this, I expect that the need for social reinforce-
ment would be greater for adopting these health
behaviors than it was for the behavior in my
study. Consequently, the diffusion of real-world
health behaviors may depend even more on
clustered-network structures than did the diffu-
sion dynamics reported in my results.

An additional constraint of my study was that
participants did not have any direct commu-
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Fig. 4. Cumulative distribution functions of the number of return visits to the health forum (x) for
populations of adopters grouped by the number of signals that they received. Comparisons are shown
for adopters who received (A) one versus two signals, (B) one versus three signals, (C) one versus four
signals, and (D) one versus five signals. All pairwise comparisons between groups two through five with
each other showed no significant differences (P > 0.4 for all six comparisons, using the Kolmogorov-
Smirnov test) (13).

3 SEPTEMBER 2010 VOL 329 SCIENCE www.sciencemag.org1196

REPORTS

 o
n 

Se
pt

em
be

r 2
9,

 2
01

0 
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d 

fro
m

 

the effect of reinforcement 2

Thursday, 7 October 2010



large-scale diffusion can reach more people and spread more 
quickly in clustered networks than in random networks 
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basic p,k model

- p prob of infection 
(here 1/3)
- k = fixed number of 
contacts (here 3)

648 CHAPTER 21. EPIDEMICS

(a) The contact network for a branching process

(b) With high contagion probability, the infection spreads widely

(c) With low contagion probability, the infection is likely to die out quickly

Figure 21.1: The branching process model is a simple framework for reasoning about the
spread of an epidemic as one varies both the amount of contact among individuals and the
level of contagion.
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(a) The contact network for a branching process

(b) With high contagion probability, the infection spreads widely

(c) With low contagion probability, the infection is likely to die out quickly

Figure 21.1: The branching process model is a simple framework for reasoning about the
spread of an epidemic as one varies both the amount of contact among individuals and the
level of contagion.

R0 := p * k 
R0 < 1 ?
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generating functions

[Technical checks: 1) the equilibria equations (??) we are writing below do correspond to the

notion of CTMC spd, 2) that the kind of CTMCs we have here are ergodic, recurrent, stable etc.

whatever they need to be for the existence and unicity of an spd (maybe need to supose mass

non-increasing Kappa rule set for a.s. boundedness?)]

[Would the conditional part of binding rules wash away for large ns -if the system is local enough?

Recall that the modified Bray hub rule sets have very different properties as a function of the

number of hubs.]

[how does the notion of entropy which is independent of the state space materiality mesh with

notions of average as when the state space is Nd
?]

In the no ‘polymer’ project we are trying to modify rules and rates and curb the formation of

large clusters. The way it is done is by forming cycles asap; no ‘helix’ over the contact map is

allowed in the sense of topological covers (for a concrete case see the TDG model). That of course

will have a major impact on ‘liquidity’. Here in this rg project we are studying one of the many

forces that drive liquidity -that of pure mindless independent bond formations. In reality that will

be combined with other forces counter acting the present one -such a no polymer ‘policy’.

If one uses functions of the activities to determine probs then equilibria equations change.

I am looking at Eric’s yeast contact map and there is very low conflict -most of the sites seem

to a have a unique partner can we compute the TE spectrum on it?

13 Probabilistic preliminaries

Suppose X is a random variable on N, its generating function is defined as fX(z) =
�

n p(X =

n)zn; for instance fδn = zn.

The Boolean distribution p(X = 0) = 1 − p, p(X = 1) = p, has gf (generating function)

1− p+ zp.

The binomial distribution p(X = k) :=
�n
k

�
pk(1−p)n−k

, has gf B(n, p)(z) = (1−p+zp)n.

This is the nth power of the Boolean gf as B is a sum of iid Booleans. So E(X) = np, V (X) =

n(n− 1)p2 + np− (np)2 = np(1− p) < n/4.

For a branching process with branchingX, the extinction probability is a fixed point of fX :

pext =
�

n p(X = n)pnext = fX(pext)

If we are branching with a sum of k iid Booleans

fX(z) = (1− p+ pz)k

so to compute pext we need to examine:

z = (1− p+ pz)k for z ∈ [0, 1]

The geometric distribution p(X = k) := (1− p)k−1p.

The exponential distribution p(X > t) = e−ct
(this one is on R+

) has characteristic function

E(eiθX) =
�∞
0 eiθtce−ct

=
�∞
0 e(iθ−c)tc = c/(c− iθ).

16
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- p = 0.4 to 0.8, k = 3
- d p-ext/dp < 0
- (f(z)- z)’ 
= kp(1-p+pz)k-1 -1 < kp - 1 if z<1
so < 0 if kp < 1 threshold!

Thursday, 7 October 2010
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SIR model
652 CHAPTER 21. EPIDEMICS
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Figure 21.2: The course of an SIR epidemic in which each node remains infectious for a

number of steps equal to tI = 1. Starting with nodes y and z initially infected, the epidemic

spreads to some but not all of the remaining nodes. In each step, shaded nodes with dark

borders are in the Infectious (I) state and shaded nodes with thin borders are in the Removed

(R) state.

Extensions to the SIR model. Although the contact network in the general SIR model

can be arbitrarily complex, the disease dynamics are still being modeled in a simple way.

Contagion probabilities are set to a uniform value p, and contagiousness has a kind of “on-off”

property: a node is equally contagious for each of the tI steps while it has the disease.

However, it is not difficult to extend the model to handle more complex assumptions.

First, we can easily capture the idea that contagion is more likely between certain pairs of

nodes by assigning a separate probability pv,w to each pair of nodes v and w for which v

links to w in the directed contact network. Here, higher values of pv,w correspond to closer

contact and more likely contagion, while lower values indicate less intensive contact. We

can also choose to model the infectious period as random in length, by assuming that an

infected node has a probability q of recovering in each step while it is infected, while leaving
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Extensions to the SIR model. Although the contact network in the general SIR model

can be arbitrarily complex, the disease dynamics are still being modeled in a simple way.

Contagion probabilities are set to a uniform value p, and contagiousness has a kind of “on-off”

property: a node is equally contagious for each of the tI steps while it has the disease.

However, it is not difficult to extend the model to handle more complex assumptions.

First, we can easily capture the idea that contagion is more likely between certain pairs of

nodes by assigning a separate probability pv,w to each pair of nodes v and w for which v

links to w in the directed contact network. Here, higher values of pv,w correspond to closer

contact and more likely contagion, while lower values indicate less intensive contact. We

can also choose to model the infectious period as random in length, by assuming that an

infected node has a probability q of recovering in each step while it is infected, while leaving

- p prob of infection
- tI = infectivity duration (=1 here)
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R0 is not enough anymore

21.3. THE SIR EPIDEMIC MODEL 653

Figure 21.3: In this network, the epidemic is forced to pass through a narrow “channel” of
nodes. In such a structure, even a highly contagious disease will tend to die out relatively
quickly.

the other details of the model as they are.

More elaborate extensions to the model involve separating the I state into a sequence

of several states (e.g. early, middle, and late periods of the infection), and allowing the

contagion probabilities to vary across these states [238]. This could be used, for example,

to model a disease with a highly contagious incubation period, followed by a less contagious

period while symptoms are being expressed. Researchers have also considered variations on

the SIR model in which the disease-causing pathogen is mutating (and thus changing its

disease characteristics) over the course of the outbreak [183].

The Role of the Basic Reproductive Number. We now discuss some observations

about the SIR model, focusing on the most basic version of the model in an arbitrary

network. First, let’s recall the claim made at the end of Section 21.2, that in networks

that do not have a tree structure, the simple dichotomy in epidemic behavior determined

by the basic reproductive number R0 does not necessarily hold. In fact, it is not hard to

construct an example showing how this dichotomy breaks down. To do this, let’s start with

the network depicted in Figure 21.3, and suppose that these layers of two nodes at a time

continue indefinitely to the right. Let’s consider an SIR epidemic in which tI = 1, the

infection probability p is 2/3, and the two nodes at the far left are the ones that are initially

infected.

When we don’t have a tree network, we need to decide how to define an analogue of

the basic reproductive number. In a network as highly structure as the one in Figure 21.3,

we can work directly from the definition of R0 as the expected number of new cases of the

disease caused by a single individual. (For less structured networks, one can consider R0

to be the expected number of new cases caused by a randomly chosen individual from the

population.) In Figure 21.3, each infected node has edges to two nodes in the next layer;

since it infects each with probability 2/3, the expected number of new cases caused by this

- p = 2/3
- tI = 1

p*k = R0 = 4/3 > 1
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Figure 21.4: An equivalent way to view an SIR epidemic is in terms of percolation, where
we decide in advance which edges will transmit infection (should the opportunity arise) and
which will not.

node is 4/3.

So in our example, R0 > 1. Despite this, however, it is easy to see that the disease

will die out almost surely after reaching only a finite number of steps. In each layer, there

are four edges leading to the next layer, and each will independently fail to transmit the

disease with probability 1/3. Therefore, with probability (1/3)4 = 1/81, all four edges will

fail to transmit the disease — and at this point, these four edges become a “roadblock”

guaranteeing the disease can never reach the portion of the network beyond them. Thus, as

the disease moves along layer-by-layer, there is a probability of at least 1/81 that each layer

will be its last. Therefore, with probability 1, it must come to an end after a finite number

of layers.

This is a very simple example, but it already indicates how different network structures

can be more or less conducive to the spread of a disease — even taking contagiousness and

other disease properties as given. Whereas the contact network of the simple branching

process from Section 21.2 was a tree that expanded rapidly in all directions, the network in

Figure 21.3 forces the disease to pass through a narrow “channel” in which a small break-

down in contagion can wipe it out. Understanding how specific types of network structure

interact with disease dynamics remains a challenging research question, and one that affects

predictions about the course of real epidemics.
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Figure 21.2: The course of an SIR epidemic in which each node remains infectious for a

number of steps equal to tI = 1. Starting with nodes y and z initially infected, the epidemic

spreads to some but not all of the remaining nodes. In each step, shaded nodes with dark

borders are in the Infectious (I) state and shaded nodes with thin borders are in the Removed

(R) state.

Extensions to the SIR model. Although the contact network in the general SIR model

can be arbitrarily complex, the disease dynamics are still being modeled in a simple way.

Contagion probabilities are set to a uniform value p, and contagiousness has a kind of “on-off”

property: a node is equally contagious for each of the tI steps while it has the disease.

However, it is not difficult to extend the model to handle more complex assumptions.

First, we can easily capture the idea that contagion is more likely between certain pairs of

nodes by assigning a separate probability pv,w to each pair of nodes v and w for which v

links to w in the directed contact network. Here, higher values of pv,w correspond to closer

contact and more likely contagion, while lower values indicate less intensive contact. We

can also choose to model the infectious period as random in length, by assuming that an

infected node has a probability q of recovering in each step while it is infected, while leaving
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borders are in the Infectious (I) state and shaded nodes with thin borders are in the Removed
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Extensions to the SIR model. Although the contact network in the general SIR model

can be arbitrarily complex, the disease dynamics are still being modeled in a simple way.

Contagion probabilities are set to a uniform value p, and contagiousness has a kind of “on-off”

property: a node is equally contagious for each of the tI steps while it has the disease.

However, it is not difficult to extend the model to handle more complex assumptions.

First, we can easily capture the idea that contagion is more likely between certain pairs of

nodes by assigning a separate probability pv,w to each pair of nodes v and w for which v

links to w in the directed contact network. Here, higher values of pv,w correspond to closer

contact and more likely contagion, while lower values indicate less intensive contact. We

can also choose to model the infectious period as random in length, by assuming that an

infected node has a probability q of recovering in each step while it is infected, while leaving
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SIS model
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Figure 21.5: In an SIS epidemic, nodes can be infected, recover, and then be infected again.

In each step, the nodes in the Infectious state are shaded.

21.4 The SIS Epidemic Model

In the previous sections we have been considering models for epidemics in which each in-

dividual contracts the disease at most once. However, a simple variation on these models

allows us to reason about epidemics where nodes can be reinfected multiple times.

To represent such epidemics, we have nodes that simply alternate between two possible

states: Susceptible (S) and Infectious (I). There is no Removed state here; rather, after a

node is done with the Infectious state, it cycles back to the Susceptible state and is ready to

catch the disease again. Because of this alternation between the S and I states, we refer to

the model as the SIS model.

Aside from the lack of an R state, the mechanics of the model follow the SIR process

very closely.

• Initially, some nodes are in the I state and all others are in the S state.

• Each node v that enters the I state remains infectious for a fixed number of steps tI .

• During each of these tI steps, v has a probability p of passing the disease to each of its

susceptible neighbors.

• After tI steps, node v is no longer infectious, and it returns to the S state.

Figure 21.5 shows an example of the SIS model unfolding on a three-node contact network

with tI = 1. Notice how node v starts out infected, recovers, and later becomes infected

again — we can imagine this as the contact network within a three-person apartment, or a

three-person family, where people pass a disease on to others they’re living with, and then

get it back from them later.

As with the SIR model, the SIS model can be extended to handle more general kinds of

assumptions: different contagion probabilities between different pairs of people; probabilistic
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(a) To represent the SIS epidemic using the SIR model, we use a “‘time-expanded” contact network
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(b) The SIS epidemic can then be represented as an SIR epidemic on this time-expanded network.

Figure 21.6: An SIS epidemic can be represented in the SIR model by creating a separate copy of the
contact network for each time step: a node at time t can infect its contact neighbors at time t + 1.

can potentially catch the disease at time t+1 if v is infected at time t. Figure 21.6(a) shows

this construction applied to the contact network from Figure 21.5.

The point is that the same SIS disease dynamics that previously circulated around in the

original contact network can now flow forward in time through the time-expanded contact

network, with copies of nodes that are in the I state at time t producing new infections in

copies of nodes at time t + 1. But on this time-expanded graph we have an SIR process,

since any copy of a node can be treated as removed (R) once its one time step of infection

is over; and with this view of the process, we have the same distribution of outcomes as the

original SIS process. Figure 21.6(b) shows the course of the SIR epidemic that corresponds

to the SIS epidemic in Figure 21.5.
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can potentially catch the disease at time t+1 if v is infected at time t. Figure 21.6(a) shows

this construction applied to the contact network from Figure 21.5.

The point is that the same SIS disease dynamics that previously circulated around in the

original contact network can now flow forward in time through the time-expanded contact

network, with copies of nodes that are in the I state at time t producing new infections in

copies of nodes at time t + 1. But on this time-expanded graph we have an SIR process,

since any copy of a node can be treated as removed (R) once its one time step of infection

is over; and with this view of the process, we have the same distribution of outcomes as the

original SIS process. Figure 21.6(b) shows the course of the SIR epidemic that corresponds

to the SIS epidemic in Figure 21.5.
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SIRS model on a 
small world(c)

- p prob of infection
- tI = infectivity duration (=1 here)
- tR = immunity duration
- c = fraction of rewired local links (on a ring) 

21.5. SYNCHRONIZATION 661

Figure 21.7: These plots depict the number of infected people over time (the quantity ninf(t)
on the y-axis) by SIRS epidemics in networks with different proportions of long-range links.
With c representing the fraction of long-range links, we see an abscence of oscillations for
small c (c = 0.01), wide oscillations for large c (c = 0.9), and a transitional region (c = 0.2)
where oscillations intermittently appear and then disappear. (Results and image from [267].)

transmission through the network occurs mainly via the short-range local edges, and so

flare-ups of the disease in one part of the network never become coordinated with flare-ups

in other parts. As c increases, these flare-ups start to synchronize, and since each burst

produces a large number of nodes with temporary immunity, there is a subsequent trough

as the disease has difficulty making its way through the sparser set of available targets. For

very large values of c (such as c = 0.9 in Figure 21.7), there are clear waves in the number

of affected individuals; for intermediate values of c (such as c = 0.2) one observes interesting

effects in which the system achieves network-wide synchronization for a period, and then

seems to fall back “out of sync” for reasons that are hard to quantify.

These results show how fairly complex epidemic dynamics can arise from simple models of

contagion and contact structure. There are, however, a number of interesting open questions;

time vs fraction I/(S+I+R)

synchronisation!
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SIRS model II

Event Transition Rate

Entry of S X,Y,Z → X+1,Y,Z µN

Infection X,Y,Z → X-1,Y+1,Z βyX

Death of S X,Y,Z → X-1,Y,Z µX

Loss of immunity X,Y,Z → X+1,Y,Z-1 γZ

Recovery from I X,Y,Z → X,Y-1,Z+1 νY

Death of I X,Y,Z → X,Y-1,Z µY

Death of R X,Y,Z → X,Y,Z-1 µZ

Rate of events in the SIRS 
model with demography

www.nature.com/nature/journal/v433/n7024/full/nature03072.html
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21.6. TRANSIENT CONTACTS AND THE DANGERS OF CONCURRENCY 663
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(a) In a contact network, we can annotate the
edges with time windows during which they existed.
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(b) The same network as in (a), except that the
timing of the w-v and w-y partnerships have been
reversed.

Figure 21.8: Different timings for the edges in a contact network can affect the potential for

a disease to spread among individuals. For example, in (a) the disease can potentially pass

all the way from u to y, while in (b) it cannot.

point in time (a few people have many, which is important as well); and the identities of

these contacts can shift significantly while the disease progresses, as new sexual partnerships

are formed and others break up.

So for modeling the contact network in such diseases, it is important to take into account

the fact that contacts are transient — they do not necessarily last through the whole course

of the epidemic, but only for particular windows of time. Thus, we will consider contact

networks in which each edge is annotated with the period of time during which it existed

— that is, the time range over which it was possible for one endpoint of the edge to have

passed the disease directly to the other.

Figure 21.8(a) shows an example of this, with the numbers inside square brackets indi-

cating the time ranges when each edge exists. Thus the u-v and w-x partnerships happen

first, and they overlap in time; after this, w has a partnership with v and then later with y.

Note also that for this section — in keeping with the motivation from HIV/AIDS and similar

diseases — we assume the edges to be undirected rather than directed, to indicate that in-

fection can pass in either direction between a pair of people in a partnership. (As in previous

sections, we could also accomplish this by having directed edges pointing in both directions

between each pair of connected people, but since everything here will be symmetric, it is

more convenient to use undirected edges.)

The Consequences of Transient Contacts. A little experimentation with the example

in Figure 21.8(a) indicates how the timing of different edges can affect the spread of a disease.
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(a) v’s two partnerships happen serially

vu w

[1,5] [2,6]

(b) v’s two partnership’s happen concurrently

Figure 21.9: A disease tends to be able to spread more widely with concurrent partnerships
(b) than with serial partnerships (a).

For example, if u has the disease at time 1, it is possible for it to spread all the way to y,

through v and w as intermediaries. (Of course, if contagion is probabilistic as before, it will

not necessarily succeed in spreading; but it has the potential to do so.) On the other hand,

u cannot spread the disease to x: node u could pass the disease to v, who could pass it to

w; but by the time it reaches w, the partnership of w and x is long over.

Moreover, changing the timing of partnerships can change the possible transmission path-

ways, even as the set of underlying contacts remains the same. For instance, the example in

Figure 21.8(b) differs from the one in Figure 21.8(a) only in that the temporal order of the

w-v and w-y partnerships has been reversed. But notice that while u was able to pass the

disease all the way to y in Figure 21.8(a), it cannot do so in Figure 21.8(b): in the latter

case, the w-y partnership is over by the time the disease could possibly get from u to w.

Such considerations are crucial as health workers and epidemiologists map out the contact

networks associated with a disease such as HIV/AIDS. For example, we can see from the

difference between Figures 21.8(a) and 21.8(b) that in order for y to know whether he or she

is at risk from a disease carried by u, it is not enough even to map out the full set of sexual

partnerships; it is crucial to know information about the order of events as well. Or if we

go back to the striking Figure 2.7 from Chapter 2, mapping out the relationships within a

high school, we can appreciate that the image itself is not enough to fully chart the potential

spread of diseases through this population — we would also need to know the timing of these

relationships.

Networks in which the edges only exist for specific periods of time have been the subject of

modeling efforts in many areas, including sociology [182, 305, 258], epidemiology [307, 406],

mathematics [106], and computer science [53, 239]. It is an issue that is relevant not just to

the spread of disease, but also to a wide range of settings that are modeled by networks. For

example, the diffusion of information, ideas, and behaviors through social networks clearly

also depends on how the timing of different communications between people either enables

or blocks the flow of information to different parts of the population.

Concurrency. Differences in the timing of contacts do not just affect who has the potential

to spread a disease to whom; the pattern of timing can influence the severity of the overall
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system at multiple levels of aggregation may be
appropriate.

When Is an Edge an Edge?
Many legal institutions (such as marriage) are di-
chotomous, and few if any societies allow one to
be one-third someone’s mother. Even for relations
with quantitative aspects, one can often usefully
identify relationships as present or absent.We do or
do not regard another as a friend; a given neuron
does or does not connect to another. When a rela-
tionship reflects either a general tendency toward or
potential for interaction, the use of a binary repre-
sentation can greatly simplify both theory and mea-
surement. It is much simpler, for instance, to study
sexual relationships than to enumerate sexual en-
counters, and indeed the mere potential for interac-

tion can have behavioral consequences, even when
specific relationships go unused [as in the case of
potential trading partners in exchange networks (23)
or third-party observers in dominance relations (24)].

Dichotomous distinctions can sometimes bemis-
leading. Many forms of interaction are inherently
episodic and occur at variable rates (25). Dichoto-
mization of such data not only obscures such varia-
tion but also requires selecting a threshold level, the
choice of which can substantially alter the proper-
ties of the resulting network, both directly through
selective tie removal (26) and indirectly through
changes in network density (27). The range of struc-
tures present at different connection strengths can
vary greatly (Fig. 1B). This cannot be resolved
solely with better data collection or more elaborate
statistical techniques. Rather, one must determine

whether the relationship under study is sufficiently
stable to be well-approximated by a constant func-
tion over the period of interest and whether the val-
ues taken by this function across pairs are sufficiently
constrained to be approximately dichotomous. For
relationships known to be highly heterogeneous
(such as trade or migration rates), no single threshold
may suffice; a weighted graph representation will
frequently be more appropriate. More studies that
assess the effectiveness of such approximations—
and provide concrete, empirically validated guidelines
for practice within particular problem domains—
would be a welcome addition to the literature.

Time Scales and Network Processes
In determining appropriate node and edge repre-
sentations, it is vital to consider the time scales on
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Fig. 1. Effects of changing definitions of “node” and “edge.” (A) Network of
interorganizational collaboration in the first 13 days of the Hurricane Katrina
response (39) illustrates potential consequences of node aggregation; edges
represent collaborations. Depending on the level of aggregation, each subor-
dinate organization could be considered a node or a parent organization (con-
taining subordinate nodes). (Left) The finest level of disaggregation, with all
subordinates of a given organization having the same color. (Right) Iteratively
merging randomly chosen organizations in the original network with their
“parents” produces a series of increasingly aggregated structures. Shaded regions
show the central 90% range of aggregated values on the basis of 100 series, and
lines represent their means. The extent of aggregation affects fundamental net-
work properties, as does the sequence of aggregation steps (indicated by width of
the simulation intervals). (B) Neural network of C. elegans [based on (6)] shows
differences in connection strength among neurons indicated as line (edge) shad-
ing in the figure at left. Nodes represent neurons, and edges reflect direct connec-
tions (arrows indicate directionality). All possible connections are shown regardless
of their strength (threshold level = 0). Taking different thresholds for the edges
(from 0 to 50% of maximum observed edge strength) leads to networks with

different structural properties (right). (C) and (D) show the effects of edge timing,
depicted as contour plots (right), in systems in which the edges are not static; each
line represents the fraction of the population reached by the diffusion process.
(Left) Time aggregates for the network being studied, including all relationships
occurring during the observation period. (C) A radio communication network from
the World Trade Center disaster, containing the largest set of people described in
(29) from Port Authority Trans-Hudson channel 26 that were connected to each
other by any chain of calls (left). Numbers within each contour line (right) indicate
the mean fraction of the network that could receive information from a randomly
chosen individual through an exponential diffusion process with the indicated edge
parameters over 250 simulation runs. Static properties have not changed, but
edge-timing variation (how long communication lasts and/or when it starts relative
to the observation period) leads to variation in diffusion potential. (D) Diffusion
simulation on the largest component of a sexual contact network described in (40)
produces similar results (right) as in (C), although the degree distribution and
cohesion properties (proportion of people connected by multiple common paths)
differ. Each line indicates the proportion ultimately infected by a random individual
(averaged over 250 trials) given the parameters of the diffusion process.
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everyone may become infected or no one may be infected, depending on:
- edge duration

- deviation on time of onset
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21.7. GENEALOGY, GENETIC INHERITANCE, AND MITOCHONDRIAL EVE 669

s t u v w x y z

Figure 21.12: We can run the model forward in time through a sequence of generations,
ending with a set of present-day individuals. Each present-day individual can then follow its
single-parent lineage by following edges leading upward through the network.

The structure of this model reflects a few underlying assumptions. To begin with, we’re

assuming a neutral model in which no individual has a selective advantage in reproduction;

everyone has the same chance of producing offspring. Furthermore, we’re modeling a situa-

tion in which each individual is produced from a single parent, as opposed to two parents in

a sexually reproducing population. This is consistent with several possible interpretations.

• First, and most directly, it can be used to model species that engage in asexual repro-

duction, with each organism arising from a single parent.

• Second, it can be used to model single-parent inheritance even in sexually reproducing

populations, including the inheritance of mitochondrial DNA among women as in our

discussion above. In this interpretation, each node represents a human woman, with

women linked to their mothers in the previous generation. Moreover, as we will discuss

later, there is in fact a much more general way to use this model to think about

inheritance in sexually reproducing populations.
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a single parent chosen 

uniformly at random

Figure 21.11: In the basic Wright-Fisher model of single-parent ancestry, time moves step-
by-step in generations; there are a fixed number of individuals in each generation; and each
offspring in a new generation comes from a single parent in the current generation.

independent of the difficulty of establishing evidence from genetic data, the existence of

someone like Mitochondrial Eve was not only natural, but in fact — as we will see next —

essentially inevitable. At their core, these models were built from a probabilistic formal-

ism involving networks; indeed, even in a qualitative sense, one can appreciate something

epidemic-like about the way in which copies of different people’s mitochondrial DNA spread

through subsequent generations, inhabiting future offspring, until one eventually crowds out

all the others. We now describe the basic versions of these models, and how they connect to

questions about ancestry.

A Model of Single-Parent Ancestry We use a fundamental model of ancestry known

in population genetics as the Wright-Fisher model [325]. To remain tractable, the model

involves a number of simplifying assumptions. Consider a population that is constrained

by resources to maintain a fixed size N in each generation. Time moves step-by-step from

one generation to the next; each new generation is formed by having the current set of N

individuals produce N offspring in total. Each offspring in this new generation is produced

from a single parent, and this parent is selected independently and uniformly at random

from among those in the current generation. Figure 21.11 depicts this process; as shown

there, we can draw the relationship of one generation to the next as a graph, with a node for

each individual, and an edge connecting each offspring to their parent chosen uniformly at

random from the previous generation. Notice that because of this rule for selecting parents,

certain individuals in the upper generation can have multiple children (such as the first and

last in Figure 21.11), while others may have none.
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in population genetics as the Wright-Fisher model [325]. To remain tractable, the model

involves a number of simplifying assumptions. Consider a population that is constrained

by resources to maintain a fixed size N in each generation. Time moves step-by-step from

one generation to the next; each new generation is formed by having the current set of N

individuals produce N offspring in total. Each offspring in this new generation is produced

from a single parent, and this parent is selected independently and uniformly at random

from among those in the current generation. Figure 21.11 depicts this process; as shown

there, we can draw the relationship of one generation to the next as a graph, with a node for

each individual, and an edge connecting each offspring to their parent chosen uniformly at

random from the previous generation. Notice that because of this rule for selecting parents,

certain individuals in the upper generation can have multiple children (such as the first and

last in Figure 21.11), while others may have none.
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Figure 21.11: In the basic Wright-Fisher model of single-parent ancestry, time moves step-
by-step in generations; there are a fixed number of individuals in each generation; and each
offspring in a new generation comes from a single parent in the current generation.
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Figure 21.13: A re-drawing of the single-parent network fom Figure 21.12. As we move back
in time, lineages of different present-day individuals coalesce until they have all converged
at the most recent common ancestor.

• Third, it can be used to model purely “social” forms of inheritance, such as master-

apprentice relationships. For example, if you receive a Ph.D. in an academic field, you

generally have a single primary advisor. If you model students as being “descended”

from advisors, than we can trace ancestries through sequences of advisors back into

the past — just as we traced maternal lineages.

Now, if we run this model forward in time through multiple generations, we get a network

such as the one pictured in Figure 21.12. Each individual is connected to one parent in the

previous generation; time runs from top to bottom, with N present-day individuals in the

lowest layer (named s through z in the figure). Notice that from any one of these individuals

at the bottom, we can trace its single-parent lineage backward in time by following edges

upward, always taking the single edge leading up out of each node we encounter.

If we imagine the individuals in the bottom row of Figure 21.12 to be present-day women,

then Mitochondrial Eve would be the lowest node in the figure where all the maternal lineages

first fully converge. It’s a bit tricky, visually, to find this node in Figure 21.12, but we can re-

most recent common ancestor
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Figure 21.20: We can view the search for coalescence as a backward walk through a sequence
of earlier generations, following lineages as they collide with each other.

we estimate the required number of generations. (In fact, these approximations still allow

for a very accurate estimate.)

In addition to the approximations, which we’ll specify in context later, we start by varying

the statement of the problem slightly, following the original work on the topic. Specifically,

we will focus on a small sample of k individuals in a large population of size N ; rather than

analyzing the time until all lineages in the full population merge into a common ancestor,

we will consider the time until the lineages of these k merge into a common ancestor. This

is reasonable from the point of view of applications, since generally one is only ever studying

a fixed-size sample of a large population; also, the calculations involved provide insight into

the question for the full population as well.

To recall the model from Section 21.7, adapted to the plan of looking at fixed-size samples

coalescence
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