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snapshot of  the CTMC (away from t=0)
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2*s_val2=3*s_val3
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150 val2 vs 100 val3 
2*s_val2=3*s_val3

criticality happens easily and early (not just at ∞!)
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working language. The reader interested in understanding how one deals with
general conditional rules may want to refer to Refs. [5,6], while a mathematical
grade exposition can be found in Ref. [8].

With this description in place we obtain the equilibrium equation which ex-
presses the ratio of bindings between our domain types, and this is all one
needs to describe the global connectivity structure, since bindings are assumed
(approximately) independent. Then we present an elaboration of Söderberg’s
model and use it to derive the criticality condition; we conclude with an an-
alytic solution of a simple case where one has only two domain types and
compare with simulation.

2 The dynamic model

Let us first define the data that we will use to describe the idealised biology of
our universe of binding agents and derive the equilibrium equation that fixes
the asymptotic ratio of the various types of bindings.

2.1 Basic data

A random graph with sites consists of the following data:
- n the set of nodes
- K the (finite) set of colours
- Z the node random variable with values in NK

- for each a, b ∈ K a dissociation constant Γab ∈ [0,∞]

Let us comment each element of the definition in turn.

The first datum n is the number of nodes, and as the goal of this paper is
to understand some of the statistical properties of the random graphs defined
by the above data (in a way which is explained below) we will consider these
properties in the limit of infinite n’s. In practice n is not infinite of course, so
the result presented here is only of heuristic value for concrete real networks
(more about the concrete case later).

Then comes K which posits the various types of domains an agent can expose.
Sometimes domain types will also be called colours -generally when we want to
stress the more mathematical aspect of a discussion. Domains themselves will
also be called sites, or stubs. Stubs of the same colour will be indistinguishable
from the point of view of the dynamics defined below, however it is important
that the reader does not confuse stubs and colours (which are types of stubs).
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the dRG model II

For instance, we will see later that even a universe with two colours and many
stubs of either colour can generate interesting statistics.

The random variable Z describes how agents are put together as collections of
domains; being a random variable it also describes their respective proportions,
that is to say p(Z = m) is the probability that a node exposes a collection
of domains m. Since there is no mathematical reason to suppose that an
agent cannot utilise a same domain type many times, agents are taken to be
multisets of colours, not mere sets (as would be natural in a concrete biological
application). Therefore Z has values in NK the set of multisets of colours -seen
as maps from colours to their number of occurrences. As above will use m to
denote such multisets of colours, which sometimes simply call degrees.

Finally the last item in our list is the equilibrium dissociation rate (the ratio
of an off rate and an on rate, see below) Γab which measures the strength of
the ab binding. Note that the higher Γab the weaker the binding; in particular
if Γab = ∞ then one has no binding at all, and obversely if Γab = 0 binding
is irreversible. The set of finite Γs defines the contact map that is the set of
domains that may bind to each other. Rates are key to the definition of the
limit proportions of edges in our graph as we will see in the next subsection.

We define a (Γ-) graph with sites as any set of nodes in NK together with
a partial pairing of their sites which respects Γ, that is for all pairs x, y of
colours a, b, one has Γab <∞.

Fig. 1 presents a simple example where n = 5, K = {a, b, c}, and can be drawn
according to any node distribution where multisets a + c and 2a + b have non
zero probability; one also needs Γaa, Γab, Γac <∞.

c

a

a a

b

c

a

c

a

a a

b

c

a

a a

b

Fig. 1. An example of graph with sites: note that the pairing between stubs/sites may
be partial; stub colours are indicated as letters a, b, c.

To lighten our notational expenses we will suppose from now on that no site
is self-binding ie Γaa =∞ -obviously, this is only a convenience.

For X a set, we also write X[2] for the set of unordered pairs of elements of
X (equivalently the set of subsets of X with 2 elements), and adhere to the
following typographic convention: when an equation is in fact a definition we

5

2.2 Evolution

Given n nodes drawn according to Z, we can now define a continuous stochas-

tic process with values in graphs with sites and of which the dynamics unfolds

as follows.

An event can be of two sorts:

- [binding] two free sites x, y of respective colours a, b bind each other with a

probability proportional to γ+
ab;

- [unbinding] two sites x, y of respective colours a, b, and already bound

together, unbind with a probability proportional to γ−ab.

The constants γ+
ab, γ−ab are respectively called the ab on- and off-rate.

Write nf
a for the number of free a sites, and eab with a, b ∈ K(2) for the number

of edges with ends of colours a, b. The above defines a continuous time Markov

chain where the activity (or expected frequency) of the system is:

�
a,b∈K(2) γ+

abn
f
an

f
b +

�
a,b∈K(2) γ−abeab

Specifically the activity is the parameter of an exponential distribution which

determines the time advance subsequent to an event chosen as explained above.

We do not linger too much on the definition of the continuous time Markov

chain since this is not useful for the rest (the reader can consult Ref. [15] for

definiteness).

One can express the equilibrium dissociation rate Γab (see §2.1) as γ−ab/γ
+
ab.

As said the above Markov process has in principle the set of Γ-graphs with

sites as a state space. But in actuality to describe the system in the limit of

large ns, one may forget nodes and only keep track of the number of free sites

(nf
a; a ∈ K), and edges (eab; a, b ∈ K(2)). This is because the probability of

binding and unbinding events does not depend on the node structure -which

is why we have called such systems unconditional earlier- and neither does the

activity of the system as one can see in the expression above.

So the two views are statistically equivalent and we choose the latter since it

is simpler. To recover the former, ie the limit random graph probability dis-

tribution, it is enough to ‘glue back’ sites according to the degree distribution

Z. This will be done implicitly when we define the branching process that

explores the size of a connected component to assess criticality (see below).

Writing na for the total number of a sites, we get the invariance equation

(always true if the initial state is in the invariant):

6



working language. The reader interested in understanding how one deals with
general conditional rules may want to refer to Refs. [5,6], while a mathematical
grade exposition can be found in Ref. [8].

With this description in place we obtain the equilibrium equation which ex-
presses the ratio of bindings between our domain types, and this is all one
needs to describe the global connectivity structure, since bindings are assumed
(approximately) independent. Then we present an elaboration of Söderberg’s
model and use it to derive the criticality condition; we conclude with an an-
alytic solution of a simple case where one has only two domain types and
compare with simulation.

2 The dynamic model

Let us first define the data that we will use to describe the idealised biology of
our universe of binding agents and derive the equilibrium equation that fixes
the asymptotic ratio of the various types of bindings.

2.1 Basic data

A random graph with sites consists of the following data:
- n the set of nodes
- K the (finite) set of colours
- Z the node random variable with values in NK

- for each a, b ∈ K a dissociation constant Γab ∈ [0,∞]

Let us comment each element of the definition in turn.

The first datum n is the number of nodes, and as the goal of this paper is
to understand some of the statistical properties of the random graphs defined
by the above data (in a way which is explained below) we will consider these
properties in the limit of infinite n’s. In practice n is not infinite of course, so
the result presented here is only of heuristic value for concrete real networks
(more about the concrete case later).

Then comes K which posits the various types of domains an agent can expose.
Sometimes domain types will also be called colours -generally when we want to
stress the more mathematical aspect of a discussion. Domains themselves will
also be called sites, or stubs. Stubs of the same colour will be indistinguishable
from the point of view of the dynamics defined below, however it is important
that the reader does not confuse stubs and colours (which are types of stubs).
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working language. The reader interested in understanding how one deals with
general conditional rules may want to refer to Refs. [5,6], while a mathematical
grade exposition can be found in Ref. [8].

With this description in place we obtain the equilibrium equation which ex-
presses the ratio of bindings between our domain types, and this is all one
needs to describe the global connectivity structure, since bindings are assumed
(approximately) independent. Then we present an elaboration of Söderberg’s
model and use it to derive the criticality condition; we conclude with an an-
alytic solution of a simple case where one has only two domain types and
compare with simulation.

2 The dynamic model

Let us first define the data that we will use to describe the idealised biology of
our universe of binding agents and derive the equilibrium equation that fixes
the asymptotic ratio of the various types of bindings.

2.1 Basic data

A random graph with sites consists of the following data:
- n the set of nodes
- K the (finite) set of colours
- Z the node random variable with values in NK

- for each a, b ∈ K a dissociation constant Γab ∈ [0,∞]

Let us comment each element of the definition in turn.

The first datum n is the number of nodes, and as the goal of this paper is
to understand some of the statistical properties of the random graphs defined
by the above data (in a way which is explained below) we will consider these
properties in the limit of infinite n’s. In practice n is not infinite of course, so
the result presented here is only of heuristic value for concrete real networks
(more about the concrete case later).

Then comes K which posits the various types of domains an agent can expose.
Sometimes domain types will also be called colours -generally when we want to
stress the more mathematical aspect of a discussion. Domains themselves will
also be called sites, or stubs. Stubs of the same colour will be indistinguishable
from the point of view of the dynamics defined below, however it is important
that the reader does not confuse stubs and colours (which are types of stubs).

4

the dRG model steady state

[All models assume n is a constant -is that a good assumption]

[ofc one possibility is to adapt RG techniques and ‘explore’ the cluster directly in an ims -with

no ref to static RGs]

[some of the conditional part of binding rules will wash away for large ns -if the system is local

(in the sense of Ref. [2])?]

2 ims

Let us consider simple κ rule sets to begin with.i

Define an independent matching systems (ims) as:

- a set of sites S
- an equivalence relation ∼ on S
- a dissociation map Γ : S2 → [0,∞]

- and a number map n : S → N

The equivalence relation ∼ aggregates sites into nodes (ie a node is an equivalence classii); na is

the number of sites of type a ∈ S and is subject to the constraint that a ∼ b ⇒ na = nb (see

below); Γ is the dissociation rate which measures the strength of a binding (the higher Γab the

weaker the binding).

We will suppose: 1) no site is self-binding (meaning Γaa =∞; this is probably just a simplification

of the writing, but to check later), and 2) no site is unmatched (meaning for all a there is a b st

Γab <∞; if there was one it would be useless anyway).

A state of the system is either the usual graph with sites based on the above contact map, or

one forgets nodes and describe the system just as a pair of tuples (nf
a ; a ∈ S) for the free sites,

and (eab; a, b ∈
�S
2

�
) for the edges.iii

The invariance equation (always true if the initial state is in the invariant):

na = nf
a +

�

b

eab (1)

Γabeab = nf
anf

b (2)

where:

- nf
a ≤ na is the number of free a sites

- eab ≤ min(na, nb) is the number of ab bindingsiv

Equivalently one can write
�

b rab ≤ 1 and narab = nbrba, with rab := eab/na.

The equilibria equation which expresses a stochastic ‘equilibrium’ (so true for large ts), namely

that the dissociation and association activities on ab bindings are the same:

Γabeab = nf
anf

b (3)

[This is a property that defines the ‘steady state’ for the ODE version, but does it define the

stationary measure as well? it only says something about averages obviously . . . we asked the

same question above]

We can rewrite the above obtaining a degree 2 polynomial system predicting the eabs as a function

of the parameters Γab, na:

Γab · eab = (na −
�

c

eac)(nb −
�

d

edb) (4)

iThe ambition is to extend this to views and local rule sets later.
iiThis is only good to represent agents that have sets of sites but I don;t think it makes a difference, the

indistinguishabilities intra and extra agents can be expressed in the K matrix.
iiiThis we could call the embedded (reversible) Petri net. To describe the limit random graph pd it is enough

to glue back sites uniformly -according to ∼.
ivEquivalently the number of as binding to bs, because we have supposed above that eab > 0⇒ a �= b. In the

presence of self-binding one needs to add symmetry factors
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working language. The reader interested in understanding how one deals with
general conditional rules may want to refer to Refs. [5,6], while a mathematical
grade exposition can be found in Ref. [8].

With this description in place we obtain the equilibrium equation which ex-
presses the ratio of bindings between our domain types, and this is all one
needs to describe the global connectivity structure, since bindings are assumed
(approximately) independent. Then we present an elaboration of Söderberg’s
model and use it to derive the criticality condition; we conclude with an an-
alytic solution of a simple case where one has only two domain types and
compare with simulation.

2 The dynamic model

Let us first define the data that we will use to describe the idealised biology of
our universe of binding agents and derive the equilibrium equation that fixes
the asymptotic ratio of the various types of bindings.

2.1 Basic data

A random graph with sites consists of the following data:
- n the set of nodes
- K the (finite) set of colours
- Z the node random variable with values in NK

- for each a, b ∈ K a dissociation constant Γab ∈ [0,∞]

Let us comment each element of the definition in turn.

The first datum n is the number of nodes, and as the goal of this paper is
to understand some of the statistical properties of the random graphs defined
by the above data (in a way which is explained below) we will consider these
properties in the limit of infinite n’s. In practice n is not infinite of course, so
the result presented here is only of heuristic value for concrete real networks
(more about the concrete case later).

Then comes K which posits the various types of domains an agent can expose.
Sometimes domain types will also be called colours -generally when we want to
stress the more mathematical aspect of a discussion. Domains themselves will
also be called sites, or stubs. Stubs of the same colour will be indistinguishable
from the point of view of the dynamics defined below, however it is important
that the reader does not confuse stubs and colours (which are types of stubs).
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[ofc one possibility is to adapt RG techniques and ‘explore’ the cluster directly in an ims -with

no ref to static RGs]

[some of the conditional part of binding rules will wash away for large ns -if the system is local

(in the sense of Ref. [2])?]
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- a set of sites S
- an equivalence relation ∼ on S
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- and a number map n : S → N

The equivalence relation ∼ aggregates sites into nodes (ie a node is an equivalence classii); na is

the number of sites of type a ∈ S and is subject to the constraint that a ∼ b ⇒ na = nb (see

below); Γ is the dissociation rate which measures the strength of a binding (the higher Γab the
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of the writing, but to check later), and 2) no site is unmatched (meaning for all a there is a b st
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one forgets nodes and describe the system just as a pair of tuples (nf
a ; a ∈ S) for the free sites,

and (eab; a, b ∈
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The invariance equation (always true if the initial state is in the invariant):
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where:

- nf
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working language. The reader interested in understanding how one deals with
general conditional rules may want to refer to Refs. [5,6], while a mathematical
grade exposition can be found in Ref. [8].

With this description in place we obtain the equilibrium equation which ex-
presses the ratio of bindings between our domain types, and this is all one
needs to describe the global connectivity structure, since bindings are assumed
(approximately) independent. Then we present an elaboration of Söderberg’s
model and use it to derive the criticality condition; we conclude with an an-
alytic solution of a simple case where one has only two domain types and
compare with simulation.

2 The dynamic model

Let us first define the data that we will use to describe the idealised biology of
our universe of binding agents and derive the equilibrium equation that fixes
the asymptotic ratio of the various types of bindings.

2.1 Basic data

A random graph with sites consists of the following data:
- n the set of nodes
- K the (finite) set of colours
- Z the node random variable with values in NK

- for each a, b ∈ K a dissociation constant Γab ∈ [0,∞]

Let us comment each element of the definition in turn.

The first datum n is the number of nodes, and as the goal of this paper is
to understand some of the statistical properties of the random graphs defined
by the above data (in a way which is explained below) we will consider these
properties in the limit of infinite n’s. In practice n is not infinite of course, so
the result presented here is only of heuristic value for concrete real networks
(more about the concrete case later).

Then comes K which posits the various types of domains an agent can expose.
Sometimes domain types will also be called colours -generally when we want to
stress the more mathematical aspect of a discussion. Domains themselves will
also be called sites, or stubs. Stubs of the same colour will be indistinguishable
from the point of view of the dynamics defined below, however it is important
that the reader does not confuse stubs and colours (which are types of stubs).

4
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For instance, we will see later that even a universe with two colours and many
stubs of either colour can generate interesting statistics.

The random variable Z describes how agents are put together as collections of
domains; being a random variable it also describes their respective proportions,
that is to say p(Z = m) is the probability that a node exposes a collection
of domains m. Since there is no mathematical reason to suppose that an
agent cannot utilise a same domain type many times, agents are taken to be
multisets of colours, not mere sets (as would be natural in a concrete biological
application). Therefore Z has values in NK the set of multisets of colours -seen
as maps from colours to their number of occurrences. As above will use m to
denote such multisets of colours, which sometimes simply call degrees.

Finally the last item in our list is the equilibrium dissociation rate (the ratio
of an off rate and an on rate, see below) Γab which measures the strength of
the ab binding. Note that the higher Γab the weaker the binding; in particular
if Γab = ∞ then one has no binding at all, and obversely if Γab = 0 binding
is irreversible. The set of finite Γs defines the contact map that is the set of
domains that may bind to each other. Rates are key to the definition of the
limit proportions of edges in our graph as we will see in the next subsection.

We define a (Γ-) graph with sites as any set of nodes in NK together with
a partial pairing of their sites which respects Γ, that is for all pairs x, y of
colours a, b, one has Γab <∞.

Fig. 1 presents a simple example where n = 5, K = {a, b, c}, and can be drawn
according to any node distribution where multisets a + c and 2a + b have non
zero probability; one also needs Γaa, Γab, Γac <∞.

c
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a a

b

c

a

c

a

a a

b

c

a

a a

b

Fig. 1. An example of graph with sites: note that the pairing between stubs/sites may
be partial; stub colours are indicated as letters a, b, c.

To lighten our notational expenses we will suppose from now on that no site
is self-binding ie Γaa =∞ -obviously, this is only a convenience.

For X a set, we also write X[2] for the set of unordered pairs of elements of
X (equivalently the set of subsets of X with 2 elements), and adhere to the
following typographic convention: when an equation is in fact a definition we

5

an sRG model -after Soderberg Act. Phys. Polonica (2003)

A simple rescaling:

�ma� = na/n

Kab = Γab/n

�ab = eab/n

introduces �ma� the average number of a sites per node according to Z (this

is an approximation which is valid only for large ns obviously), and Kab the

scale-less dissociation constant. One can think of the division of Γ by n as a

volume term, which is traditional when one translates individual-based rates

to intensive units (densities or concentrations), and of �ab as an edge density.

We get an equivalent system over the K[2]-indexed variables �ab:

Kab�ab = (�ma� −
�

c

�ac)(�mb� −
�

d

�bd) (4)

so that a scale-less version of the original data including the colour set K, the

node random variable Z, and the Kabs is enough to describe the steady state

ratios of each edge type.

The former constraint on eab now translates as: 0 ≤ �ab ≤ min(�ma�, �mb�).

We will use the solutions of eq. (4) to parameterise the static random graph

model which we present now. Incidentally, one may wish to prove that this

static model defines indeed the limit probability distribution associated to the

Markov process just defined. This is an interesting question but we don’t need

to solve it to proceed -as we shall see.

3 The static model

The data needed to define a coloured degree model (adapted from Ref. [17,

p.6]) is the same as in the dynamic model above, except one replaces the disso-

ciation rates Γab with a new ingredient Ya, where p(Ya = b) is the probability

that a stub of colour a binds some stub of colour b.

So one has:

- n the set of nodes

- K the set of colours together with ∗ a special value not in K
- Z the node random variable with values in NK

- for each a ∈ K, Ya the edge random variable with values in K + {∗}

This new random graph model is static, as one no longer describes a stochastic

(rewriting) process, but directly defines a probability on a population of graphs

8
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size and gf-ology

with sites. This is the role of the Ya’s. Importantly, we are not supposing�
b∈K p(Ya = b) = 1, which amounts to saying that a site may be left free (or

unpaired), a fact that we represent by Ya taking the exceptional value ∗; so
p(Ya = ∗) may be strictly positive. As dynamic models usually have reversible
bindings, one needs to have free sites.

Below we write ma for the number of stubs of colour a in m (aka the multi-
plicity of a in m), and m− b for the multiset where there is one less copy of b
(this supposes mb > 0); we also sometimes write simply pm for p(Z = m).

3.1 The dynamic to static mapping

For the static graph defined by the Ya’s to correspond to the limit behaviour
of a dynamic graph as defined in the preceding section we need to set the
probability that a stub of colour a binds some stub of colour b as: 3

p(Ya = b) := �ab/�ma� (5)

where the edge density �ab := eab/n is given by equilibrium equation (2). The
probability that a stub of colour a is connected to one of colour b belonging
to a node of degree m is given by �ab/�ma� · mbpm/�mb� -since the probability
to bind to a b is �ab/�ma�, and the probability that this b belongs to an m is
proportional to mbpm, the probability of m itself and the multiplicity of b in
m (in particular if mb = 0 then this is zero as it should).

If we write:

Tab := �ab/�ma��mb� (6)

the above probability is simply Tabmbpm (note that Tab is symmetric in a, b)
an expression which we will use in the next subsection.

3.2 The size generating function

We wish now to evaluate the size of components in our random graphs. Specif-
ically we are looking for an inductive expression of the random variable Sa

p

describing the size of the connected component discovered during an explo-
ration of depth p -which starts exiting from some node by a stub of colour a.

3 In fact if one is ready to measure the edge densities in a simulation, the following
can be applied as well to transient analysis.

9

with sites. This is the role of the Ya’s. Importantly, we are not supposing�
b∈K p(Ya = b) = 1, which amounts to saying that a site may be left free (or

unpaired), a fact that we represent by Ya taking the exceptional value ∗; so
p(Ya = ∗) may be strictly positive. As dynamic models usually have reversible
bindings, one needs to have free sites.

Below we write ma for the number of stubs of colour a in m (aka the multi-
plicity of a in m), and m− b for the multiset where there is one less copy of b
(this supposes mb > 0); we also sometimes write simply pm for p(Z = m).

3.1 The dynamic to static mapping

For the static graph defined by the Ya’s to correspond to the limit behaviour
of a dynamic graph as defined in the preceding section we need to set the
probability that a stub of colour a binds some stub of colour b as: 3

p(Ya = b) := �ab/�ma� (5)

where the edge density �ab := eab/n is given by equilibrium equation (2). The
probability that a stub of colour a is connected to one of colour b belonging
to a node of degree m is given by �ab/�ma� · mbpm/�mb� -since the probability
to bind to a b is �ab/�ma�, and the probability that this b belongs to an m is
proportional to mbpm, the probability of m itself and the multiplicity of b in
m (in particular if mb = 0 then this is zero as it should).

If we write:

Tab := �ab/�ma��mb� (6)

the above probability is simply Tabmbpm (note that Tab is symmetric in a, b)
an expression which we will use in the next subsection.

3.2 The size generating function

We wish now to evaluate the size of components in our random graphs. Specif-
ically we are looking for an inductive expression of the random variable Sa

p

describing the size of the connected component discovered during an explo-
ration of depth p -which starts exiting from some node by a stub of colour a.

3 In fact if one is ready to measure the edge densities in a simulation, the following
can be applied as well to transient analysis.

9

That stub could well be free in which case the exploration process stops right

away and the discovered size is 0. To a good and customary approximation

(see eg Ref. [14]) we will look at this exploration as a branching process which

uses alternatively the Ya’s for following an edge to enter a new node, and Z
for picking a new exit stub out of the said node. We will study this process

using its generating function and that of Z:

Sa
p (z) :=

�
n p(Sa

p = n)zn

Z(xc; c ∈ K) :=
�

m∈NK p(Z = m)
�

c∈K xmc
c

(To keep light notations we write the generating function of a random variable

as the random variable itself.)

Generating functions are a way to display a probability on a countable set that

comes particularly handy to study branching processes (see eg Ref. [18]). Note

that Z’s generating function is a formal power series with a K-indexed set of

unknowns, reflecting the fact that the set of values of Z is itself a K-indexed

Cartesian product.

Reasoning by cases on the type of node discovered by following the edge (if

any) out of a stub of type a - we can express the size generating function Sa
p

inductively as:

Sa
p (z) − p(Y a = ∗)

= z
�

n>0 p(Sa
p = n)zn−1

= z
�

n>0,m
�

b∈K Tabmbpm p(
�

c∈m−b Sc
p−1 = n − 1)zn−1

= z
�

b∈K Tab
�

m mbpm (
�

n>0 p(
�

c∈m−b Sc
p−1 = n − 1)zn−1)

= z
�

b∈K Tab
�

m mbpm
�

c∈m−b Sc
p−1(z)

= z
�

b∈K Tab∂bZ(Sc
p−1(z); c ∈ K)

Note that on the first line, we have factored out the only case where the size is

0 which is obtained when the starting stub of colour a is free with probability:

p(Y a
= ∗) = 1 −

�

b∈K

�ab/�ma� = 1 −
�

b∈K

Tab�mb� (7)

On the second line, we use the probability Tabmbpm to connect an a to a b
belonging to a node of degree m computed above. The fourth line uses the fact

that the collective generating function of a sum of independent random vari-

ables (here the Sc
p−1’s) is the product of their respective generating functions.

The derivation concludes with the introduction of the generating function as-

sociated to Z which has its formal parameters indexed by K; ∂bZ standing

10
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liquidity index

for the partial derivative of the said function with respect to the variable of
index b.

3.3 Criticality

Define 1 := (1a; a ∈ K) the node with one stub of each colour.

By induction we can prove that Sa
p (1) = 1: firstly, one has Sa

0 (x) = 1 since in
zero jumps one gets zero size with probability 1; secondly, ∂bZ(1c; c ∈ K) =
�mb�, so by equation (7) one obtains Sa

p (1) = p(Y a = ∗) +
�

b∈K Tab�mb� = 1.
This is expected since in general a generating function evaluates to 1 at 1.

Now by taking the limit for large ps in the inductive expression for Sa
p derived

above, and fixing any real or complex value of z, one obtains a K-indexed
system of equations determining the unknowns (Sa(z); a ∈ K):

Sa(z)− p(Y a = ∗) = z
�

b∈K

Tab∂bZ(Sc(z); c ∈ K) (8)

In fact only the particular value z = 1 interests us, in which case 1 is a solution
since as said above Sa

p (1) = 1 for all a ∈ K.

This solution is a fixed point of the function ψ : RK → RK defined as:

ψa(xb; b ∈ K) := p(Y a = ∗) +
�

b∈K Tab∂bZ(xb; b ∈ K)

This fixed point is stable if ψ’s Jacobian has its largest eigenvalue strictly
below 1 when evaluated at 1.

We can compute this Jacobian:

∂cψa(xb; b ∈ K) =
�

b∈K Tab∂c∂bZ(xb; b ∈ K)

∂cψa(1) =
�

b∈K TabEbc = (TE)ac

with Ebc := ∂b∂cZ(1) the combinatorial variance of Z, which can equivalently
be written �mbmc − δbcmb�.

Now the interest of asserting whether 1 is a stable solution is that it determines
when in parameter space the exploration may result in an infinite cluster.
Intuitively 1’s instability means that a (necessarily smaller) stable fixed point
exists, and then the probability that has vanished in the limiting process
represents the non zero probability that the size of our explored cluster is
infinite.
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Hence we use instability as our criticality condition (following Söderberg), and
this gives the following criticality condition, where we write λ1(TE) for the
TE eigenvalue with highest modulus:

Criticality condition: An unconditional rule set is critical if |λ1(TE)| > 1,
subcritical iff |λ1(TE)| < 1.

One could regard generally |λ1(TE)| as a form of liquidity index for a system
of interest, the closer it gets to 1, the larger the clusters one is likely to observe;
when it passes the threshold, one will observe infinite ones in the limit, which
in practice means large ones. Of course this is only of heuristic value since the
statement above has only a claim to hold in the limit of infinite systems.

The actual condition is interesting in that it shows clearly the interaction be-
tween the node structure, specifically the second order combinatorial moments
of Z -hinting at the fact that node distributions with long tails (typically large
hubs) will favour criticality, and the connexion structure given by T (as de-
fined in eq. (6)) which only depends on the first order moment of Z, and the
occupancy ratios �ab.

To get a better sense of how this interaction plays out we will explore next the
behaviour of our liquidity index in the simple case of bipartite systems where
one can solve the equilibrium equations in closed form, and yet the condition
is still far from trivial. We also finish discussing how and why our model allows
partial pairings (free sites).

4 Bipartite systems

Let us consider bipartite systems where one has only two colours a, b, and one
only allows to pair stubs of opposite colours -meaning T =

�
0 t
t 0

�
for some t > 0.

Not only this case is informative, but it is also the occasion to recapitulate
the various steps needed in testing criticality.

4.1 Numerically

We proceed numerically first and consider the following node distribution:
- p(Z = 2a) = p(Z = 3b) := 1

2 ;
- with averages: �ma� = 1, �mb� = 3

2 ,
- and combinatorial moments: Eaa = 1, Ebb = 3 and Eab = Eba = 0.

To determine the value of t from an underlying dynamic random graph model,

12
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liquidity index

for the partial derivative of the said function with respect to the variable of
index b.

3.3 Criticality

Define 1 := (1a; a ∈ K) the node with one stub of each colour.

By induction we can prove that Sa
p (1) = 1: firstly, one has Sa

0 (x) = 1 since in
zero jumps one gets zero size with probability 1; secondly, ∂bZ(1c; c ∈ K) =
�mb�, so by equation (7) one obtains Sa

p (1) = p(Y a = ∗) +
�

b∈K Tab�mb� = 1.
This is expected since in general a generating function evaluates to 1 at 1.

Now by taking the limit for large ps in the inductive expression for Sa
p derived

above, and fixing any real or complex value of z, one obtains a K-indexed
system of equations determining the unknowns (Sa(z); a ∈ K):

Sa(z)− p(Y a = ∗) = z
�

b∈K

Tab∂bZ(Sc(z); c ∈ K) (8)

In fact only the particular value z = 1 interests us, in which case 1 is a solution
since as said above Sa

p (1) = 1 for all a ∈ K.

This solution is a fixed point of the function ψ : RK → RK defined as:

ψa(xb; b ∈ K) := p(Y a = ∗) +
�

b∈K Tab∂bZ(xb; b ∈ K)

This fixed point is stable if ψ’s Jacobian has its largest eigenvalue strictly
below 1 when evaluated at 1.

We can compute this Jacobian:

∂cψa(xb; b ∈ K) =
�

b∈K Tab∂c∂bZ(xb; b ∈ K)

∂cψa(1) =
�

b∈K TabEbc = (TE)ac

with Ebc := ∂b∂cZ(1) the combinatorial variance of Z, which can equivalently
be written �mbmc − δbcmb�.

Now the interest of asserting whether 1 is a stable solution is that it determines
when in parameter space the exploration may result in an infinite cluster.
Intuitively 1’s instability means that a (necessarily smaller) stable fixed point
exists, and then the probability that has vanished in the limiting process
represents the non zero probability that the size of our explored cluster is
infinite.
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Hence we use instability as our criticality condition (following Söderberg), and
this gives the following criticality condition, where we write λ1(TE) for the
TE eigenvalue with highest modulus:

Criticality condition: An unconditional rule set is critical if |λ1(TE)| > 1,
subcritical iff |λ1(TE)| < 1.

One could regard generally |λ1(TE)| as a form of liquidity index for a system
of interest, the closer it gets to 1, the larger the clusters one is likely to observe;
when it passes the threshold, one will observe infinite ones in the limit, which
in practice means large ones. Of course this is only of heuristic value since the
statement above has only a claim to hold in the limit of infinite systems.

The actual condition is interesting in that it shows clearly the interaction be-
tween the node structure, specifically the second order combinatorial moments
of Z -hinting at the fact that node distributions with long tails (typically large
hubs) will favour criticality, and the connexion structure given by T (as de-
fined in eq. (6)) which only depends on the first order moment of Z, and the
occupancy ratios �ab.

To get a better sense of how this interaction plays out we will explore next the
behaviour of our liquidity index in the simple case of bipartite systems where
one can solve the equilibrium equations in closed form, and yet the condition
is still far from trivial. We also finish discussing how and why our model allows
partial pairings (free sites).

4 Bipartite systems

Let us consider bipartite systems where one has only two colours a, b, and one
only allows to pair stubs of opposite colours -meaning T =

�
0 t
t 0

�
for some t > 0.

Not only this case is informative, but it is also the occasion to recapitulate
the various steps needed in testing criticality.

4.1 Numerically

We proceed numerically first and consider the following node distribution:
- p(Z = 2a) = p(Z = 3b) := 1

2 ;
- with averages: �ma� = 1, �mb� = 3

2 ,
- and combinatorial moments: Eaa = 1, Ebb = 3 and Eab = Eba = 0.

To determine the value of t from an underlying dynamic random graph model,

12
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bicolor case

which implies in particular that the roots are equal iff �− = �ma� = �mb� = �+

(which also implies K = 0).

Because as said earlier eab/n ≤ �ma� ≤ �mb�, only the smallest root, which we

now simply write �, is a meaningful equilibrium:

� :=
�ma�+ �mb�+ K −

�
(�ma�+ �mb�+ K)2 − 4�ma��mb�

2
(9)

If in addition we define the following ‘noise’ term:

N :=
�mamb�+

�
�ma(ma − 1)��mb(mb − 1)�
�ma��mb�

(10)

it is easy to see that the system liquidity index is λ = �N .

In the simple bicolor case we see how the edge density � and the degree cor-

relation dependent term N separate neatly. Both have a monotone effect on

criticality. The higher the density of edges and/or the longer the tail of the

degree distribution, the less liquid the system.

One can observe that � only depends on the average coloured degrees �ma�,
�mb� and the ‘pull’ K, and that it is clearly a decreasing function of K. When

K = 0, ie when binding is irreversible, � peaks at the infimum of �ma�, stubs

of type a are saturated and λ = N�ma�. 2

So to drive the system over the transition boundary one can bring K down,

but another subtler way to achieve the same is to bring �ma� closer or equal

to �mb�; which in our numerical example means choosing p(Z = 3b) =
2
5

to balance on average the number of stubs of each type (more about this in

Fig. 4).

If we return to the numerical example (§4.1), we get:

�ma�+ �mb�+ K =
11
4 , � =

1
2(

11
4 −

�
(

11
4 )2 − 4 · 3

2) =
3
4

so eab = 150 -indeed the value read for the average steady state in the simula-

tion above. And since N =
2
3

√
3, N� =

1
2

√
3 < 1 and the system is subcritical

in accordance with the numerical simulations (Fig. 3) where component sizes

stay small relative to the node population.

2 When K becomes large λ ∼ N �m�2
4K where �m� := �ma�+ �mb�.

15

which implies in particular that the roots are equal iff �− = �ma� = �mb� = �+

(which also implies K = 0).

Because as said earlier eab/n ≤ �ma� ≤ �mb�, only the smallest root, which we

now simply write �, is a meaningful equilibrium:

� :=
�ma�+ �mb�+ K −

�
(�ma�+ �mb�+ K)2 − 4�ma��mb�

2
(9)

If in addition we define the following ‘noise’ term:

N :=
�mamb�+

�
�ma(ma − 1)��mb(mb − 1)�
�ma��mb�

(10)

it is easy to see that the system liquidity index is λ = �N .

In the simple bicolor case we see how the edge density � and the degree cor-

relation dependent term N separate neatly. Both have a monotone effect on

criticality. The higher the density of edges and/or the longer the tail of the

degree distribution, the less liquid the system.

One can observe that � only depends on the average coloured degrees �ma�,
�mb� and the ‘pull’ K, and that it is clearly a decreasing function of K. When

K = 0, ie when binding is irreversible, � peaks at the infimum of �ma�, stubs

of type a are saturated and λ = N�ma�. 2

So to drive the system over the transition boundary one can bring K down,

but another subtler way to achieve the same is to bring �ma� closer or equal

to �mb�; which in our numerical example means choosing p(Z = 3b) =
2
5

to balance on average the number of stubs of each type (more about this in

Fig. 4).

If we return to the numerical example (§4.1), we get:

�ma�+ �mb�+ K =
11
4 , � =

1
2(

11
4 −

�
(

11
4 )2 − 4 · 3

2) =
3
4

so eab = 150 -indeed the value read for the average steady state in the simula-

tion above. And since N =
2
3

√
3, N� =

1
2

√
3 < 1 and the system is subcritical

in accordance with the numerical simulations (Fig. 3) where component sizes

stay small relative to the node population.

2 When K becomes large λ ∼ N �m�2
4K where �m� := �ma�+ �mb�.

15



bicolor case

which implies in particular that the roots are equal iff �− = �ma� = �mb� = �+

(which also implies K = 0).

Because as said earlier eab/n ≤ �ma� ≤ �mb�, only the smallest root, which we

now simply write �, is a meaningful equilibrium:

� :=
�ma�+ �mb�+ K −

�
(�ma�+ �mb�+ K)2 − 4�ma��mb�

2
(9)

If in addition we define the following ‘noise’ term:

N :=
�mamb�+

�
�ma(ma − 1)��mb(mb − 1)�
�ma��mb�

(10)

it is easy to see that the system liquidity index is λ = �N .

In the simple bicolor case we see how the edge density � and the degree cor-

relation dependent term N separate neatly. Both have a monotone effect on

criticality. The higher the density of edges and/or the longer the tail of the

degree distribution, the less liquid the system.

One can observe that � only depends on the average coloured degrees �ma�,
�mb� and the ‘pull’ K, and that it is clearly a decreasing function of K. When

K = 0, ie when binding is irreversible, � peaks at the infimum of �ma�, stubs

of type a are saturated and λ = N�ma�. 2

So to drive the system over the transition boundary one can bring K down,

but another subtler way to achieve the same is to bring �ma� closer or equal

to �mb�; which in our numerical example means choosing p(Z = 3b) =
2
5

to balance on average the number of stubs of each type (more about this in

Fig. 4).

If we return to the numerical example (§4.1), we get:

�ma�+ �mb�+ K =
11
4 , � =

1
2(

11
4 −

�
(

11
4 )2 − 4 · 3

2) =
3
4

so eab = 150 -indeed the value read for the average steady state in the simula-

tion above. And since N =
2
3

√
3, N� =

1
2

√
3 < 1 and the system is subcritical

in accordance with the numerical simulations (Fig. 3) where component sizes

stay small relative to the node population.

2 When K becomes large λ ∼ N �m�2
4K where �m� := �ma�+ �mb�.

15

which implies in particular that the roots are equal iff �− = �ma� = �mb� = �+

(which also implies K = 0).

Because as said earlier eab/n ≤ �ma� ≤ �mb�, only the smallest root, which we

now simply write �, is a meaningful equilibrium:

� :=
�ma�+ �mb�+ K −

�
(�ma�+ �mb�+ K)2 − 4�ma��mb�

2
(9)

If in addition we define the following ‘noise’ term:

N :=
�mamb�+

�
�ma(ma − 1)��mb(mb − 1)�
�ma��mb�

(10)

it is easy to see that the system liquidity index is λ = �N .

In the simple bicolor case we see how the edge density � and the degree cor-

relation dependent term N separate neatly. Both have a monotone effect on

criticality. The higher the density of edges and/or the longer the tail of the

degree distribution, the less liquid the system.

One can observe that � only depends on the average coloured degrees �ma�,
�mb� and the ‘pull’ K, and that it is clearly a decreasing function of K. When

K = 0, ie when binding is irreversible, � peaks at the infimum of �ma�, stubs

of type a are saturated and λ = N�ma�. 2

So to drive the system over the transition boundary one can bring K down,

but another subtler way to achieve the same is to bring �ma� closer or equal

to �mb�; which in our numerical example means choosing p(Z = 3b) =
2
5

to balance on average the number of stubs of each type (more about this in

Fig. 4).

If we return to the numerical example (§4.1), we get:

�ma�+ �mb�+ K =
11
4 , � =

1
2(

11
4 −

�
(

11
4 )2 − 4 · 3

2) =
3
4

so eab = 150 -indeed the value read for the average steady state in the simula-

tion above. And since N =
2
3

√
3, N� =

1
2

√
3 < 1 and the system is subcritical

in accordance with the numerical simulations (Fig. 3) where component sizes

stay small relative to the node population.

2 When K becomes large λ ∼ N �m�2
4K where �m� := �ma�+ �mb�.

15



bicolor case

which implies in particular that the roots are equal iff �− = �ma� = �mb� = �+

(which also implies K = 0).

Because as said earlier eab/n ≤ �ma� ≤ �mb�, only the smallest root, which we

now simply write �, is a meaningful equilibrium:

� :=
�ma�+ �mb�+ K −

�
(�ma�+ �mb�+ K)2 − 4�ma��mb�

2
(9)

If in addition we define the following ‘noise’ term:

N :=
�mamb�+

�
�ma(ma − 1)��mb(mb − 1)�
�ma��mb�

(10)

it is easy to see that the system liquidity index is λ = �N .

In the simple bicolor case we see how the edge density � and the degree cor-

relation dependent term N separate neatly. Both have a monotone effect on

criticality. The higher the density of edges and/or the longer the tail of the

degree distribution, the less liquid the system.

One can observe that � only depends on the average coloured degrees �ma�,
�mb� and the ‘pull’ K, and that it is clearly a decreasing function of K. When

K = 0, ie when binding is irreversible, � peaks at the infimum of �ma�, stubs

of type a are saturated and λ = N�ma�. 2

So to drive the system over the transition boundary one can bring K down,

but another subtler way to achieve the same is to bring �ma� closer or equal

to �mb�; which in our numerical example means choosing p(Z = 3b) =
2
5

to balance on average the number of stubs of each type (more about this in

Fig. 4).

If we return to the numerical example (§4.1), we get:

�ma�+ �mb�+ K =
11
4 , � =

1
2(

11
4 −

�
(

11
4 )2 − 4 · 3

2) =
3
4

so eab = 150 -indeed the value read for the average steady state in the simula-

tion above. And since N =
2
3

√
3, N� =

1
2

√
3 < 1 and the system is subcritical

in accordance with the numerical simulations (Fig. 3) where component sizes

stay small relative to the node population.

2 When K becomes large λ ∼ N �m�2
4K where �m� := �ma�+ �mb�.

15

which implies in particular that the roots are equal iff �− = �ma� = �mb� = �+

(which also implies K = 0).

Because as said earlier eab/n ≤ �ma� ≤ �mb�, only the smallest root, which we

now simply write �, is a meaningful equilibrium:

� :=
�ma�+ �mb�+ K −

�
(�ma�+ �mb�+ K)2 − 4�ma��mb�

2
(9)

If in addition we define the following ‘noise’ term:

N :=
�mamb�+

�
�ma(ma − 1)��mb(mb − 1)�
�ma��mb�

(10)

it is easy to see that the system liquidity index is λ = �N .

In the simple bicolor case we see how the edge density � and the degree cor-

relation dependent term N separate neatly. Both have a monotone effect on

criticality. The higher the density of edges and/or the longer the tail of the

degree distribution, the less liquid the system.

One can observe that � only depends on the average coloured degrees �ma�,
�mb� and the ‘pull’ K, and that it is clearly a decreasing function of K. When

K = 0, ie when binding is irreversible, � peaks at the infimum of �ma�, stubs

of type a are saturated and λ = N�ma�. 2

So to drive the system over the transition boundary one can bring K down,

but another subtler way to achieve the same is to bring �ma� closer or equal

to �mb�; which in our numerical example means choosing p(Z = 3b) =
2
5

to balance on average the number of stubs of each type (more about this in

Fig. 4).

If we return to the numerical example (§4.1), we get:

�ma�+ �mb�+ K =
11
4 , � =

1
2(

11
4 −

�
(

11
4 )2 − 4 · 3

2) =
3
4

so eab = 150 -indeed the value read for the average steady state in the simula-

tion above. And since N =
2
3

√
3, N� =

1
2

√
3 < 1 and the system is subcritical

in accordance with the numerical simulations (Fig. 3) where component sizes

stay small relative to the node population.

2 When K becomes large λ ∼ N �m�2
4K where �m� := �ma�+ �mb�.

15



bicolor case

which implies in particular that the roots are equal iff �− = �ma� = �mb� = �+

(which also implies K = 0).

Because as said earlier eab/n ≤ �ma� ≤ �mb�, only the smallest root, which we

now simply write �, is a meaningful equilibrium:

� :=
�ma�+ �mb�+ K −

�
(�ma�+ �mb�+ K)2 − 4�ma��mb�

2
(9)

If in addition we define the following ‘noise’ term:

N :=
�mamb�+

�
�ma(ma − 1)��mb(mb − 1)�
�ma��mb�

(10)

it is easy to see that the system liquidity index is λ = �N .

In the simple bicolor case we see how the edge density � and the degree cor-

relation dependent term N separate neatly. Both have a monotone effect on

criticality. The higher the density of edges and/or the longer the tail of the

degree distribution, the less liquid the system.

One can observe that � only depends on the average coloured degrees �ma�,
�mb� and the ‘pull’ K, and that it is clearly a decreasing function of K. When

K = 0, ie when binding is irreversible, � peaks at the infimum of �ma�, stubs

of type a are saturated and λ = N�ma�. 2

So to drive the system over the transition boundary one can bring K down,

but another subtler way to achieve the same is to bring �ma� closer or equal

to �mb�; which in our numerical example means choosing p(Z = 3b) =
2
5

to balance on average the number of stubs of each type (more about this in

Fig. 4).

If we return to the numerical example (§4.1), we get:

�ma�+ �mb�+ K =
11
4 , � =

1
2(

11
4 −

�
(

11
4 )2 − 4 · 3

2) =
3
4

so eab = 150 -indeed the value read for the average steady state in the simula-

tion above. And since N =
2
3

√
3, N� =

1
2

√
3 < 1 and the system is subcritical

in accordance with the numerical simulations (Fig. 3) where component sizes

stay small relative to the node population.

2 When K becomes large λ ∼ N �m�2
4K where �m� := �ma�+ �mb�.

15

which implies in particular that the roots are equal iff �− = �ma� = �mb� = �+

(which also implies K = 0).

Because as said earlier eab/n ≤ �ma� ≤ �mb�, only the smallest root, which we

now simply write �, is a meaningful equilibrium:

� :=
�ma�+ �mb�+ K −

�
(�ma�+ �mb�+ K)2 − 4�ma��mb�

2
(9)

If in addition we define the following ‘noise’ term:

N :=
�mamb�+

�
�ma(ma − 1)��mb(mb − 1)�
�ma��mb�

(10)

it is easy to see that the system liquidity index is λ = �N .

In the simple bicolor case we see how the edge density � and the degree cor-

relation dependent term N separate neatly. Both have a monotone effect on

criticality. The higher the density of edges and/or the longer the tail of the

degree distribution, the less liquid the system.

One can observe that � only depends on the average coloured degrees �ma�,
�mb� and the ‘pull’ K, and that it is clearly a decreasing function of K. When

K = 0, ie when binding is irreversible, � peaks at the infimum of �ma�, stubs

of type a are saturated and λ = N�ma�. 2

So to drive the system over the transition boundary one can bring K down,

but another subtler way to achieve the same is to bring �ma� closer or equal

to �mb�; which in our numerical example means choosing p(Z = 3b) =
2
5

to balance on average the number of stubs of each type (more about this in

Fig. 4).

If we return to the numerical example (§4.1), we get:

�ma�+ �mb�+ K =
11
4 , � =

1
2(

11
4 −

�
(

11
4 )2 − 4 · 3

2) =
3
4

so eab = 150 -indeed the value read for the average steady state in the simula-

tion above. And since N =
2
3

√
3, N� =

1
2

√
3 < 1 and the system is subcritical

in accordance with the numerical simulations (Fig. 3) where component sizes

stay small relative to the node population.

2 When K becomes large λ ∼ N �m�2
4K where �m� := �ma�+ �mb�.

15



bicolor case

which implies in particular that the roots are equal iff �− = �ma� = �mb� = �+

(which also implies K = 0).

Because as said earlier eab/n ≤ �ma� ≤ �mb�, only the smallest root, which we

now simply write �, is a meaningful equilibrium:

� :=
�ma�+ �mb�+ K −

�
(�ma�+ �mb�+ K)2 − 4�ma��mb�

2
(9)

If in addition we define the following ‘noise’ term:

N :=
�mamb�+

�
�ma(ma − 1)��mb(mb − 1)�
�ma��mb�

(10)

it is easy to see that the system liquidity index is λ = �N .

In the simple bicolor case we see how the edge density � and the degree cor-

relation dependent term N separate neatly. Both have a monotone effect on

criticality. The higher the density of edges and/or the longer the tail of the

degree distribution, the less liquid the system.

One can observe that � only depends on the average coloured degrees �ma�,
�mb� and the ‘pull’ K, and that it is clearly a decreasing function of K. When

K = 0, ie when binding is irreversible, � peaks at the infimum of �ma�, stubs

of type a are saturated and λ = N�ma�. 2

So to drive the system over the transition boundary one can bring K down,

but another subtler way to achieve the same is to bring �ma� closer or equal

to �mb�; which in our numerical example means choosing p(Z = 3b) =
2
5

to balance on average the number of stubs of each type (more about this in

Fig. 4).

If we return to the numerical example (§4.1), we get:

�ma�+ �mb�+ K =
11
4 , � =

1
2(

11
4 −

�
(

11
4 )2 − 4 · 3

2) =
3
4

so eab = 150 -indeed the value read for the average steady state in the simula-

tion above. And since N =
2
3

√
3, N� =

1
2

√
3 < 1 and the system is subcritical

in accordance with the numerical simulations (Fig. 3) where component sizes

stay small relative to the node population.

2 When K becomes large λ ∼ N �m�2
4K where �m� := �ma�+ �mb�.

15

which implies in particular that the roots are equal iff �− = �ma� = �mb� = �+

(which also implies K = 0).

Because as said earlier eab/n ≤ �ma� ≤ �mb�, only the smallest root, which we

now simply write �, is a meaningful equilibrium:

� :=
�ma�+ �mb�+ K −

�
(�ma�+ �mb�+ K)2 − 4�ma��mb�

2
(9)

If in addition we define the following ‘noise’ term:

N :=
�mamb�+

�
�ma(ma − 1)��mb(mb − 1)�
�ma��mb�

(10)

it is easy to see that the system liquidity index is λ = �N .

In the simple bicolor case we see how the edge density � and the degree cor-

relation dependent term N separate neatly. Both have a monotone effect on

criticality. The higher the density of edges and/or the longer the tail of the

degree distribution, the less liquid the system.

One can observe that � only depends on the average coloured degrees �ma�,
�mb� and the ‘pull’ K, and that it is clearly a decreasing function of K. When

K = 0, ie when binding is irreversible, � peaks at the infimum of �ma�, stubs

of type a are saturated and λ = N�ma�. 2

So to drive the system over the transition boundary one can bring K down,

but another subtler way to achieve the same is to bring �ma� closer or equal

to �mb�; which in our numerical example means choosing p(Z = 3b) =
2
5

to balance on average the number of stubs of each type (more about this in

Fig. 4).

If we return to the numerical example (§4.1), we get:

�ma�+ �mb�+ K =
11
4 , � =

1
2(

11
4 −

�
(

11
4 )2 − 4 · 3

2) =
3
4

so eab = 150 -indeed the value read for the average steady state in the simula-

tion above. And since N =
2
3

√
3, N� =

1
2

√
3 < 1 and the system is subcritical

in accordance with the numerical simulations (Fig. 3) where component sizes

stay small relative to the node population.

2 When K becomes large λ ∼ N �m�2
4K where �m� := �ma�+ �mb�.

15



2a vs. 3b

4.4 Subcritical bicolor systems

A particular, and particularly simple case of bicolor systems is when one has a

single agent type bearing one stub of each colour a, b. Connected components

are chains, �ma� = �mb� = 1, N = 1, and λ = � ≤ 1 which is only critical if

K = 0. Clearly the probability that a given chain has length k will vary as

�k and decrease rapidly with k. This is in fact a more general phenomenon.

If all nodes contain exactly one stub of type a, then the underlying system is

subcritical -unless K = 0. Indeed, the assumption forces �ma(ma − 1)� = 0

and N = 1, so:

λ = � =
1 + �mb�+ K −

�
(1 + �mb�+ K)2 − 4�mb�

2
≤ 1

One sees that the noise term N plays a key role in criticality. Intriguingly,

this suggests that large scale polymers made of divalent monomers, because

they cannot use too low a K (that would lead to irreversible behaviours),

need helper agents who are trivalent or more. Of course this must be taken

with a pinch of salt, because biological polymers usually grow in a directed

way (and therefore should be idealised by conditional rules which our analytic

approach cannot cope with at the moment), and because we are dealing with

an idealisation in the first place.

Note that this does not apply to our original 2a, 3b example (§4.1), and indeed,

by choosing carefully the parameters Z, and K, it is possible to obtain critical

behaviours; the liquidity index is given by:

λ(p, K) :=
2 + p + K −

�
(2 + p + K)2 − 24p(1− p)

2

�
3p(1− p)

with p := p(Z = 3b) the ratio of 3b agents. Plotting λ (Fig. 4) shows where

critical behaviour happens.

5 Conclusion

In general a Kappa rule set determines a notion of random graph, namely

its stationary probability distribution (under mild assumptions of ergodicity

of the underlying Markov chain). Sometimes the state space accessible to a

rule set is so large, and the dynamics driving the system spread so thinly

on the said state space (ie the stationary entropy is so large) that it cannot

be approximated in any meaningful way by a particular average state. When

this is the case -one has to look at a particular state, at least to some extent,
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the phase transition “theorem”

4 Sod stub sRG model [7, p.6]

The data needed to define a model is:

- n a set of nodes

- k a finite set of colours
- pm a pd over m ∈ Nk

- a real symmetric preference matrix (Tab; a, b ∈ k)

One asks for convenience that T �m� = 1 a normalisation condition explained below.

The random protocol:

- for each i ∈ n draw the coloured stub vector mi until S =
�

ia mia even

- draw a total pairing (aka matching) µ over S with probability

p(µ) ∝
�

{x<y;x,y∈S} Tκ(x),κ(y)

with κ : kS is the colour function mapping each stub to its colour.

The result is a pd on k-coloured graphs with sites with a fixed numer of nodes n. [colours

just a way to specify indistiguishability between certain sites of a same node -those of the same

colour]

We note that the probability of a matching does not depend on the node structure -other than

via the number of stubs of each colours, ie via the rv ma :=
�

i mia -so both steps commute. Of

course the node structure will influence the connectedness properties.

[treat stubs as sites and free sites as binding to a fixed ∗ stub? free stubs have no influence on

connectivity, so perhaps this is not even necessary and the impact of free stubs in κ is just to

constrain the pm coloured degree draw?]

Pick a stub x ∈ κ−1a, on average the probability that x is connected to some y ∈ κ−1b is

Tab�nb�/
�

c Tac�nc� = Tab�mb�/
�

c Tac�mc� = Tab�mb�

where we write �na� = n�ma� for the average number of a stubs.

This is using the normalisation condition on T namely
�

b Tab�mb� = 1 in the second step.

[In words the normalisation ensures that the prob that an a binds a b one is Tab]

So the average ratio of a stubs bound to b ones is �eab�/�na� = Tab�mb�, and by summing one

also has that the average ratio of a stubs is 1 (so the real number is �na� = n�ma�).

Define Eab := �mamb� the (combinatorial) covariance of the distribution of stubs/sites; this

measures how likely it is in average that an a site will cohabit with a b site.

What is a path probability on average: part of a (non zero) coefficient in a power of TE where

T is the edge site-site matrix, E is the node matrix.

The probability of a long path is vanishing if (TE)n converges.

So we have ‘proved’ that subcritical means (TE)n converges (equivalently the TE spectrum is

< 1 bounded).

A very simple reason why there would be no long non zero coefficient is that TE is nilpotent,

and its spectrum must be {0}.

This means one cannot cycle (and the contact map is itself of finite diameter). Eg the Bray hub

cannot cluster, it has a bounded size -the same can be said in general of any acyclic contact map

(where a cycle is non zero diagonal coefficient in a power of TE). (recall that EGF is an example

of acyclic contact map.)
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the phase transition “theorem”

4 Sod stub sRG model [7, p.6]

The data needed to define a model is:

- n a set of nodes

- k a finite set of colours
- pm a pd over m ∈ Nk

- a real symmetric preference matrix (Tab; a, b ∈ k)

One asks for convenience that T �m� = 1 a normalisation condition explained below.

The random protocol:

- for each i ∈ n draw the coloured stub vector mi until S =
�

ia mia even

- draw a total pairing (aka matching) µ over S with probability

p(µ) ∝
�

{x<y;x,y∈S} Tκ(x),κ(y)

with κ : kS is the colour function mapping each stub to its colour.

The result is a pd on k-coloured graphs with sites with a fixed numer of nodes n. [colours

just a way to specify indistiguishability between certain sites of a same node -those of the same

colour]

We note that the probability of a matching does not depend on the node structure -other than

via the number of stubs of each colours, ie via the rv ma :=
�

i mia -so both steps commute. Of

course the node structure will influence the connectedness properties.

[treat stubs as sites and free sites as binding to a fixed ∗ stub? free stubs have no influence on

connectivity, so perhaps this is not even necessary and the impact of free stubs in κ is just to

constrain the pm coloured degree draw?]

Pick a stub x ∈ κ−1a, on average the probability that x is connected to some y ∈ κ−1b is

Tab�nb�/
�

c Tac�nc� = Tab�mb�/
�

c Tac�mc� = Tab�mb�

where we write �na� = n�ma� for the average number of a stubs.

This is using the normalisation condition on T namely
�

b Tab�mb� = 1 in the second step.

[In words the normalisation ensures that the prob that an a binds a b one is Tab]

So the average ratio of a stubs bound to b ones is �eab�/�na� = Tab�mb�, and by summing one

also has that the average ratio of a stubs is 1 (so the real number is �na� = n�ma�).

Define Eab := �mamb� the (combinatorial) covariance of the distribution of stubs/sites; this

measures how likely it is in average that an a site will cohabit with a b site.

What is a path probability on average: part of a (non zero) coefficient in a power of TE where

T is the edge site-site matrix, E is the node matrix.

The probability of a long path is vanishing if (TE)n converges.

So we have ‘proved’ that subcritical means (TE)n converges (equivalently the TE spectrum is

< 1 bounded).

A very simple reason why there would be no long non zero coefficient is that TE is nilpotent,

and its spectrum must be {0}.

This means one cannot cycle (and the contact map is itself of finite diameter). Eg the Bray hub

cannot cluster, it has a bounded size -the same can be said in general of any acyclic contact map

(where a cycle is non zero diagonal coefficient in a power of TE). (recall that EGF is an example

of acyclic contact map.)
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the phase transition “theorem”

4 Sod stub sRG model [7, p.6]

The data needed to define a model is:

- n a set of nodes

- k a finite set of colours
- pm a pd over m ∈ Nk

- a real symmetric preference matrix (Tab; a, b ∈ k)

One asks for convenience that T �m� = 1 a normalisation condition explained below.

The random protocol:

- for each i ∈ n draw the coloured stub vector mi until S =
�

ia mia even

- draw a total pairing (aka matching) µ over S with probability

p(µ) ∝
�

{x<y;x,y∈S} Tκ(x),κ(y)

with κ : kS is the colour function mapping each stub to its colour.

The result is a pd on k-coloured graphs with sites with a fixed numer of nodes n. [colours

just a way to specify indistiguishability between certain sites of a same node -those of the same

colour]

We note that the probability of a matching does not depend on the node structure -other than

via the number of stubs of each colours, ie via the rv ma :=
�

i mia -so both steps commute. Of

course the node structure will influence the connectedness properties.

[treat stubs as sites and free sites as binding to a fixed ∗ stub? free stubs have no influence on

connectivity, so perhaps this is not even necessary and the impact of free stubs in κ is just to

constrain the pm coloured degree draw?]

Pick a stub x ∈ κ−1a, on average the probability that x is connected to some y ∈ κ−1b is

Tab�nb�/
�

c Tac�nc� = Tab�mb�/
�

c Tac�mc� = Tab�mb�

where we write �na� = n�ma� for the average number of a stubs.

This is using the normalisation condition on T namely
�

b Tab�mb� = 1 in the second step.

[In words the normalisation ensures that the prob that an a binds a b one is Tab]

So the average ratio of a stubs bound to b ones is �eab�/�na� = Tab�mb�, and by summing one

also has that the average ratio of a stubs is 1 (so the real number is �na� = n�ma�).

Define Eab := �mamb� the (combinatorial) covariance of the distribution of stubs/sites; this

measures how likely it is in average that an a site will cohabit with a b site.

What is a path probability on average: part of a (non zero) coefficient in a power of TE where

T is the edge site-site matrix, E is the node matrix.

The probability of a long path is vanishing if (TE)n converges.

So we have ‘proved’ that subcritical means (TE)n converges (equivalently the TE spectrum is

< 1 bounded).

A very simple reason why there would be no long non zero coefficient is that TE is nilpotent,

and its spectrum must be {0}.

This means one cannot cycle (and the contact map is itself of finite diameter). Eg the Bray hub

cannot cluster, it has a bounded size -the same can be said in general of any acyclic contact map

(where a cycle is non zero diagonal coefficient in a power of TE). (recall that EGF is an example

of acyclic contact map.)
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This is using the normalisation condition on T namely
�

b Tab�mb� = 1 in the second step.

[In words the normalisation ensures that the prob that an a binds a b one is Tab]

So the average ratio of a stubs bound to b ones is �eab�/�na� = Tab�mb�, and by summing one

also has that the average ratio of a stubs is 1 (so the real number is �na� = n�ma�).

Define Eab := �mamb� the (combinatorial) covariance of the distribution of stubs/sites; this

measures how likely it is in average that an a site will cohabit with a b site.

What is a path probability on average: part of a (non zero) coefficient in a power of TE where

T is the edge site-site matrix, E is the node matrix.

The probability of a long path is vanishing if (TE)n converges.

So we have ‘proved’ that subcritical means (TE)n converges (equivalently the TE spectrum is

< 1 bounded).

A very simple reason why there would be no long non zero coefficient is that TE is nilpotent,

and its spectrum must be {0}.

This means one cannot cycle (and the contact map is itself of finite diameter). Eg the Bray hub

cannot cluster, it has a bounded size -the same can be said in general of any acyclic contact map

(where a cycle is non zero diagonal coefficient in a power of TE). (recall that EGF is an example

of acyclic contact map.)

7

subcritical ⇔ [TE]n converges ⇔ spec(TE) 1-bounded



simulations



n=200, Kab=1/4, 

we need to fix the parameter Kab. Suppose we choose Kab =
1
4 . By eq. (6) all

we need to know is the value of �ab at steady state. This can be obtained either

by solving the equilibrium equation (which we do later) -or simply by using

a simulation (which is an analog way of solving the equation). 4 has We start

with the latter.

Looking at the steady state of the simulation for n = 200, Γab = 50 = nKab

we see that on average eab = 150, so �ab =
3
4 , �ba =

1
2 , and t =

150
200 · 2

3 =
1
2

(Fig. 2). (Of course only the analytic derivation below will show that we read

back correctly our parametrisation from the data.)

Fig. 2. A run with 100 of each agent type 2a, 3b and Γab = 50. The curve (sampled
at frequency 103 per time unit) represents eab the number of ab edges -for one re-
alisation of the continuous time Markov chain. The estimated average steady state
value 150 -which corresponds to �ab = 3

4 - is represented as a dotted line.

So:

TE =
1
2




0 3

1 0





hence (TE)2 =
3
4I, powers of TE clearly vanish, and the system is subcritical.

Indeed size distributions obtained by simulation are consistent withour ex-

pectations, when the population becomes larger (n = 10000) the size of the

largest cluster does not increase as O(n) -as one can see Fig 3.

4 The simulation uses the generic Kappa engine which is based on a simulation
algorithm that is suitably insensitive to the size of the species generated by the
system [19]. This can be obtained at support@plectix.com.
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n=1000 size distribution



simplx --sim 2a_3b.ka --time 0.03 --no-measure --no-maps --output-final-state --rescale 1000

’a1-b1’ 3b(b1),2a(a1) <-> 3b(b1!1),2a(a1!1) @ 1.0,50
’a1-b2’ 3b(b2),2a(a1) <-> 3b(b2!1),2a(a1!1) @ 1.0,50
’a1-b3’ 3b(b3),2a(a1) <-> 3b(b3!1),2a(a1!1) @ 1.0,50
’a2-b1’ 3b(b1),2a(a2) <-> 3b(b1!1),2a(a2!1) @ 1.0,50
’a2-b2’ 3b(b2),2a(a2) <-> 3b(b2!1),2a(a2!1) @ 1.0,50
’a2-b3’ 3b(b3),2a(a2) <-> 3b(b3!1),2a(a2!1) @ 1.0,50

%init: 100 * (2a(a1,a2))
%init: 100 * (3b(b3,b1,b2))

%obs: 2a(a1!_)
%obs: 3b(b1!_)
%obs: 3b(b2!_)
%obs: 3b(b3!_)
%obs: 2a(a2!_)

the above takes (n = 0.2 106):
- Initialization: 27.5 sec. CPU
- Simulation: 213.5 sec. CPU the final state is 2MB -takes ages to write in a file!- max size is
168, of relative size < 0.1%.

n=0.2 106 -max size



conclusions

TE have non monotonic effects in the case of  conflicting 
contact maps 

how good is liquidity a proxy for the size distribution

what is the influence of  other forces (extend to view-local 
systems)

compute liquidity of  yeast!

where is information (more later)


