Lecture Notes on

Semantics of
Programming Languages

for Part IB of the Computer Science Tripos

Andrew M. Pitts
University of Cambridge
Computer Laboratory

© A. M. Pitts, 1997-2002

First edition 1997.
Revised 1998,1999, 1999bis, 2000, 2002 .

Contents

Learning Guide il
1 Introduction 1
1.1 Operationalsemantics. 1
1.2 Anabstractmachine 4
1.3 Structural operational semantics 9
2 Induction 10
2.1 Anoteonabstractsyntax 10
2.2 Structuralinduction 12
2.3 Rule-based inductive definitions Lo L 15
2.4 Ruleinduction. e 18
2.5 EXEICISES o o i e e 19
3 Structural Operational Semantics 21
3.1 TransitionsemanticsaiC 21
3.2 Evaluationsemanticsofc 26
3.3 Equivalence of C transition and evaluation semantics 31
3.4 EXEICISES . . . o v o i e e 34
4 Semantic Equivalence 37
4.1 Semantic equivalenceb€phrases L. 39
4.2 Blockstructuredlocalstate 44
4.3 EXErCISES . . . o o i e e e e 47
5 Functions 49
5.1 Substitution and-conversion e 50
5.2 Call-by-name and call-by-value 54
5.3 Staticsemantics e e e e e 57
5.4 Localrecursive definitions 62
5.5 EXErCISES o v i e e e e 68
6 Interaction 71
6.1 Input/output 72
6.2 Bisimilarity 75
6.3 Communicating ProCESSES v v i e e e 80
6.4 EXEICISES o o e e 86
References 89

Lectures Appraisal Form 91

Learning Guide

These notes are designed to accompany 12 lectures on programming language semantics
for Part IB of the Cambridge University Computer Science Tripos. The aim of the course

is to introduce the structural, operational approach to programming language semantics.
(An alternative, more mathematical approach and its relation to operational semantics, is
introduced in the Part Il course ddenotational Semantics) The course shows how this
formalism is used to specify the meaning of some simple programming language constructs
and to reason formally about semantic properties of programs. At the end of the course you
should:

e be familiar with rule-based presentations of the operational semantics of some simple
imperative, functional and interactive program constructs;

e be able to prove properties of an operational semantics using various forms of
induction (mathematical, structural, and rule-based);

e and be familiar with some operationally-based notions of semantic equivalence of
program phrases and their basic properties.

The dependency between the material in these notes and the lectures will be something like:

secton 1 2 3 4 5 6
lectures 1 2 3-4 56 7-9 10-12.

Tripos questions

Of the many past Tripos questions on programming language semantics, here are those which
are relevant to the current course.

Year 01 01 00 00 99 99 98 98 97 97 96
Paper 5 6 5 6 5 6 5 6 5 6 5
Queston 9 9 9 9 9 9 12 12 12 12 12
Year 95 94 93 92 91 90 90 88 88 87

Paper 6 7 7 7 7 7 8 2 4 2
Question 12 13 10 9 5 4 11 1 f2 1f

1 not part (c)
1 not part (b)

In addition, some exercises are given at the end of most sections. The harder ones are
indicated with ax.

Recommended books

e Winskel, G. (1993)The Formal Semantics of Programming LanguadéBl Press.

This is an excellent introduction to both the operational and denotational semantics of
programming languages. As far as this course is concerned, the relevant chapters are
2-4, 9 (sections 1,2, and 5), 11 (sections 1,2,5, and 6) and 14.

e Hennessy, M. (1990)The Semantics of Programming Languagé$ey.

The book is subtitled ‘An Elementary Introduction using Structural Operational

Semantics’ and as such is a very good introduction to many of the key topics
in this course, presented in a more leisurely and detailed way than Winskel's
book. The book is out of print, but a version of it is availble on the web at

(www.cogs.susx.ac.uk/users/matthewh/semnotes.ps.gz).

Further reading

e Gunter, C. A. (1992). Semantics of Programming Languages. Structures and
TechniquesMIT Press.

This is a graduate-level text containing much material not covered in this course. |
mention it here because its first, introductory chapter is well worth reading.

e Plotkin, G. D.(1981). A structural approach to operational semantics. Technical
Report DAIMI FN-19, Aarhus University.

These notes first popularised the ‘structural’ approach to operational semantics—the
approach emphasised in this course—but couched solely in terms of transition rela-
tions (‘small-step’ semantics), rather than evaluation relations (‘big-step’, ‘natural’, or
‘relational’ semantics). Although somewhat dated and hard to get hold of (the Com-
puter Laboratory Library has a copy), they are still a mine of interesting examples.

e The two essays:
Hoare, C. A. R.. Algebra and Models.
Milner, R. Semantic Ideas in Computing.
In: Wand, |. and R. Milner (Eds) (1996Computing TomorrowCUP.

Two accessible essays giving somewhat different perspectives on the semantics of
computation and programming languages.

Note

The material in these notes has been drawn from several different sources, including the
books mentioned above, previous versions of this course by the author and by others, and
similar courses at some other universities. Any errors are of course all the author's own
work. A list of corrections will be available from the course web page (follow links from
(www.cl.cam.ac.uk/Teaching/)). A lecture(r) appraisal form is included at the end of the

notes. Please take time to fill it in and return it. Alternatively, fill out an electronic version of
the form via the URL(www.c1l.cam.ac.uk/cgi — bin/1r/login).

Andrew Pitts
(amp12@cl.cam.ac.uk)

1 Introduction

1.1 Operational semantics

Some aspects of the design and use of programming languages are shown on Slide 1.
The mathematical tools for precisely specifyiagntax(regular expressions, context free
grammars, BNF, etc) are by now well understood and widely applied: you meet this theory
in the Part IA cours®egular Languages and Finite Automataand see how it is applied in

the Part IBCompiler Construction course. By contrast, effective techniques for precisely
specifying the run-time behaviour of programs have proved much harder to develop. It is
for this reason that a programming language’s documentation very often gives only informal
definitions (in natural language) of the meaning of the various constructs, backed up by
example code fragments. But there are good reasons for wanting to go further than this and
give a fully formal, mathematical definition of a language’s semantics; some of these reasons
are summarised on Slide 2.

Constituents of programming language definition

Syntax The alphabet of symbols and a formal description of the
well-formed expressions, phrases, programs, etc.

Pragmatics Description and examples of how the various
features of the language are intended to be used.
Implementation of the language (compilers and interpreters).
Auxiliary tools (syntax checkers, debuggers, etc.).

Semantics The meaning of the language’s features (e.g. their
run-time behaviour)—all too often only specified informally, or
via the previous heading.

Slide 1

1 INTRODUCTION

Uses of formal, mathematical semantics

Implementation issues. Machine-independent specification of
behaviour. Correctness of program analyses and
optimisations.

Verification. Basis of methods for reasoning about program
properties and program specifications.

Language design. Can bring to light ambiguities and unforeseen
subtleties in programming language constructs. Mathematical
tools used for semantics can suggest useful new
programming styles. (E.g. influence of Church’s lambda calculus (circa

1934) on functional programming).

Slide 2

Styles of semantics

Denotational Meanings for program phrases defined abstractly
as elements of some suitable mathematical structure.

Axiomatic Meanings for program phrases defined indirectly via
the axioms and rules of some logic of program properties.

Operational Meanings for program phrases defined in terms of
the steps of computation they can take during program
execution.

Slide 3

1.1 Operational semantics 3

Some different approaches to programming language semantics are summarised on
Slide 3. This course will be concerned wiperational Semantics The denotational
approach (and its relation to operational semantics) is introduced in the Part Il course on
Denotational Semantics Examples of the axiomatic approach occur in the Part Il course
on Specification and Verification I. Each approach has its advantages and disadvantages
and there are strong connections between them. However, it is good to start with operational

semantics because it is easier to relate operational descriptions to practical concerns and the

mathematical theory underlying such descriptions is often quite concrete. For example, some
of the operational descriptions in this course will be phrased in terms of the simple notion of
atransition systenmdefined on Slide 4.

Transition systems defined

A transition system is specified by
e aset Config, and

e abinary relation — C Config X Config.

The elements of C'onfig are often called configurations (or
/

‘states’), and the binary relation is written infix, i.e. |c — ¢
means c and ¢’ are related by —.

Slide 4

Definition 1.1.1. Here is some notation and terminology commonly used in connection with
a transition systemiConfig, —).

(i) —* denotes the binary relation atlonfig which is thereflexive-transitiveclosure of—. In
other words: —* ¢’ holds just in case

C=¢C)—=ClL— ... = Cp1—Cp=2"C

holds for some, ..., ¢, € Config (wheren > 0; the caser = 0 just means: = ¢’).
(i) ¢ -» means that there is nd € Config for whichc — ¢ holds.
(i) The transition system is said to loketerministiaf for all ¢, ¢y, cs € Config

c—c1&c— ey =1 = .

4 1 INTRODUCTION

(The term ‘monogenic’ is perhaps more appropriate, but less commonly used for this
property.)

(iv) Very often the structure of a transition system is augmented with distinguished subsets
andT of Config whose elements are call@dtial andterminal configurations respectively.
(‘Final’ is a commonly used synonym for ‘terminal’ in this context.) The idea is that a
pair (i, t) of configurations withi € I,¢ € T andi —* ¢ represents a ‘run’ of the transition
system. Itis usual to arrange thati€ 7 thenc - ; configurations satisfying¢ T & ¢ —»
are said to bestuck

1.2 An abstract machine

Historically speaking, the first approach to giving mathematically rigorous operational
semantics to programming languages was in terms of a suidé&ract machine-a
transition system which specifies an interpreter for the programming language. We give
an example of this for a simple Language of Commands, which we_€all The abstract
machine we describe is often called BIC-machinge.g. in Plotkin 1981, 1.5.2). The name
arises from the fact that its configurations can be defined as triple¥, C'), whereS is a

Sack of (intermediate and final) resultd/ is a Memory, i.e. an assignment of integers to
some finite set of locations, ardis aControl stack of phrases to be evaluated. So the name
is somewhat arbitrary. We prefer to call memorstatesand to order the components of a
configuration differently, but nevertheless we stick with the traditional name ‘SMC".

LC Syntax
Phrases
P:=C|FE|B
Commands
C == skip|l:=FE|C;C

| if B then C else C | while B do C

Integer expressions
E:=n|W|FEipE
Boolean expressions

B:=b| EbopFE

Slide 5

!LC is essentially the same M P in Winskel 1993, 2.1 andVhileL in Hennessy 1990, 4.3.

1.2 An abstract machine 5

LC is a very simple language for describing, in a structured way, computable algorithms
on numbers via the manipulation of state. In this context we can take a ‘state’ to consist of a
finite number of locations (registers) for storing integdrG.integer and boolean expressions
are notations for state-dependent integer and boolean valdesimmands are notations for
state-manipulating operations. The syntax Gfphrases is given on Slide 5, where

e ncz™ {...,—=2,-1,0,1,2,...}, the set ointegers

¢« heBY {true, false}, the set obooleans

felL ™ {lo, £1,02,43, ...} afixed, infinite set of symbols whose elements we will
calllocations(the termprogram variablds also commonly used), because they denote
locations for storing integers—the integer expressiodenotes the integer currently
stored in/;

e jop € lop def {+, —, ...} afixed, finite set of integer-valued binary operations;

e bop € Bop def {=,<,>,...} afixed, finite set of boolean-valued binary operations.

SMC-machine configurations

are triples (c, r,) consisting of
e aControlstack c¢::=
nil | P-c|iop-c|bop-c|:=-c|if-c|while-c
e a Stack of (intermediate and final) results
ro=mnil|P-r|Ll-r

e a M emory state, s, which by definition is a partial function
mapping locations to integers, defined only at finitely many
locations.

Slide 6

The setl’ of configurations of the SMC machine is defined on Slide 6 and its transition
relation is defined in Figure 1. Itis not hard to see that this is a deterministic transition system:
the head of the control stackuniquely determines which type of transition applies next (if

6 1 INTRODUCTION
any), unless the headif or while, in which case the head of the phrase stadetermines
which transition applies.

The SMC-machine can be used to exeduieeommands for their effects on state (in turn
involving the evaluation oEC integer and boolean expressions). We define:

initial configurations to be of the form{C' - nil, nil, s) whereC' is anLC command and is
a state;

terminal configurationsto be of the formnil, nil, s) wheres is a state.

Then existence of a run of the SMC-machif€,- nil, nil, s) —* (nil, nil, s’), provides a
precise definition of what it means to say thét &xecuted in state terminates successfully
producing stata’”. Some of the transitions in an example run are shown on Slide 7.

(C - nil, nil, s) (Iteration)
— (B - while - nil, B - C' - nil, 5) (Compound)
— (1£-0-> - while - nil, B-C’-nil,s) (Location)
— (0> while-nil,4- B-C'-nil,s) (Constant)
— (> -while-nil,0-4-B.-C'-nil,s) (Operator)
— (while - nil, true - B - C’ - nil, s) (While-True)
— (C"- C - nil,nil, s)
- (nil, nil, s[¢ — 0,¢ > 24])

¢ ¥ while B do (',

B “uso,
where , def ,

C Y=k =101,
s Y40y

Slide 7

1.2 An abstract machine 7

Integer expressions

Constant (n-e,rys) — (e,n-r,s)

Location (1) (-c,rys) — (e,n-rys)y ifs(f)=n
Compound ((Eyiop E3) -c,r,8) — (Ey-Ey-iop-c,r,s)
Operator (?) (iop -c,ng -ny-1,5) — (e,n-r,s) ifnypiopns=n

Boolean expressions

Constant (b-ecyrys) — (c,b-1,8)

Compound ((Ey bop Es) -c,r,s) — (FEy-Es-bop-c,r,s)
Operator (2) (bop -c,ng-ny-1,5) — (c,b-r,s) ifnybopny=1>
Commands

Skip (skip-¢,r,s) — (e,1,8)
Assignment (L:=FE)-c,r,s) — (E-:=-c,L-1,5)
Assign) ((=-c,n-L-r,s) — (c,r s/l nl)
Conditional ((if B then C; else Cs) -¢,r,s) — (B-if-¢,Cy-Cq -1, 5)
If-True (if - c,true-Cy - Cy - 1,5) — (Cy1-c,1,5)
If-False (if - c,false - Cy - Cy - r,s) — (Cy-c,r,5)
Sequencing ((C1;C)-e,ry8) — (C1-Cy-c,r,8)
Iteration ((while Bdo C) -¢,r,s) — (B-while-c¢,B-C -r,s)
While-True (while - ¢,true- B-C -r,s) — (C-(while Bdo C)-¢c,r,s)
While-False (while - ¢,false- B-C -r,s) — (c,r,s)

Notes

(1) The side condition means: the partial function s is defined at £ and has value n there.

(2) The side conditions mean that n and b are the (integer and boolean) values of the
operations iop and bop at the integers n1 and na. The SMC-machine abstracts away
from the details of how these basic arithmetic operations are actually calculated. Note
the order of arguments (ns - n1) on the left-hand side!

(3) The state s[¢ — n] is the finite partial function that maps ¢ to n and otherwise acts like
S.

Figure 1: SMC-machine transitions

1 INTRODUCTION

Informal Semantics

Here is the informal definition of

while B do C

adapted from B. W. Kernighan and D. M. Ritchie, The C
Programming Language (Prentice-Hall, 1978), p 202:

The command (' is executed repeatedly so long as the value of
the expression B remains true. The test takes place before
each execution of the command.

Slide 8

Aims of Plotkin’s Structural Operational Semantics

Transition systems should be structured in a way that reflects the
structure of the language: the possible transitions for a compound
phrase should be built up inductively from the transitions for its
constituent subphrases.

At the same time one tries to increase the clarity of semantic
definitions by minimising the role of ad hoc, phrase-analysis

transitions and by making the configurations of the transition
system as simple (abstract) as possible.

Slide 9

1.3 Structural operational semantics 9

1.3 Structural operational semantics

The SMC-machine is quite representative of the notion of an abstract machine for executing
programs step-by-step. It suffers from the following defects, which are typical of this
approach to operational semantics based on the use of abstract machines.

e Only a few of the transitions really perform computation, the rest being concerned
with phrase analysis.

e There are many stuck configurations which (we hope) are never reached starting from
an initial configuration. (E.g(if - ¢,2 - Cy - Cy - 1, 8).)

e The SMC-machine does not directly formalise our intuitive understanding diGhe
control constructs (such as that fehile-loops given on Slide 8). Rather, it is more
or less clearly correct on the basis of this intuitive understanding.

e The machine has “a tendency to pull the syntax to pieces or at any rate to wander
around the syntax creating various complex symbolic structures which do not seem
particularly forced by the demands of the language itself” (to quote Plotkin 1981,
page 21). For this reason, it is quite hard to use the machine as a basis for formal
reasoning about properties o€ programs.

Plotkin (1981) develops structural approach to operational semantizased on transi-
tion systems which successfully avoids many of these pitfalls. Its aims are summarised on
Slide 9. Itis this approach—coupled with related developments based on evaluation relations
rather than transition relations (Kahn 1987; Milner, Tofte, and Harper 1990)—that we will
illustrate in this course with respect to a number of small programming languages, of which
LC is the simplest. The languages are chosen to be small and with ‘idealised’ syntax, in
order to bring out more clearly the operational semantics of the various features, or combina-
tion of features they embody. For an example of the specification of a structural operational
semantics for a full-scale language, see (Milner, Tofte, and Harper 1990).

10 2 INDUCTION

2 Induction

Inductive definitions and proofs by induction are all-pervasive in the structural approach to
operational semantics. The familiar (one hopes!) principle of Mathematical Induction and the
equivalent Least Number Principle are recalled on Slide 10. Most of the induction techniques
we will use can be justified by appealing to Mathematical Induction. Nevertheless, it is
convenient to derive from it a number of induction principles more readily applicable to the
structures with which we have to deal. This section briefly reviews some of the ideas and
techniques; many examples of their use will occur throughout the rest of the course. Apart
from the importance of these techniques for the subject, they should be important to you
too, for examination questions on this course assume an ability to give proofs using the
various induction techniques

Mathematical Induction

For any property ®(z) of natural numbers

:BENdéf{O,l,Z...},toprove

Vz € N.®(x)
it suffices to prove
®(0) & VreN &(z)= o(x+1).

Equivalently:

Least Number Principle: any non-empty subset of N possesses

a least element.

Slide 10

2.1 A note on abstract syntax

When one gives a semantics for a programming language, one should only be concerned
with theabstract syntaxf the language, i.e. with the parse tree representation of phrases that
results from lexical and syntax analysis of program texts. Accordingly, in this course when
we look at various example languages we wiily deal with abstract syntax treésThus a

In Section 5, when we consider binding constructs, we will be even more abstract and identify trees
that only differ up to renaming of bound variables.

2.1 A note on abstract syntax 11

definition like that on Slide 5 is not really meant to spedify phrases as strings of tokens,
but rather adinite labelled trees In this case the leaf nodes of the trees are labelled with
elements from the set

ZUBULU {skip}

(using the notation introduced in Section 1.2), while the non-leaf nodes of the trees are
labelled with elements of from the set

TopUBop U {:=,;, while_do, if then else}.

An example of such a tree is given on Slide 11, together with the informal textual represen-
tation which we will usually employ. The textual representation uses parentheses in order to
indicate unambiguously which syntax tree is being referred to; and various infix and mixfix
notations may be used for readability.

From this viewpoint of abstract syntax trees, the purpose of a grammar such as that on
Slide 5 is to indicate which symbols are allowed as node labels, and the number and type of
the children of each kind of node. Thus the grammar is analogous to the SML declaration of
three mutually recursive datatypes given on Slide 12. Accordingly we will often refer to the
labels at (non-leaf) nodes of syntax treesasstructorsand the label at the root node of a
tree as itoutermost constructor

Abstract syntax tree of an LC command

if then_else
e
> skip ;

/| I\
0

Textual representation:

if !4 > 0 then skip else (skip ; ¢ :=0)

Slide 11

12 2 INDUCTION

An SML datatype of LC phrases

dat atype iexp Int of int | Loc of |oc

lop of iop*iexp*iexp

and bexp True | Fal se
Bop of bop*i exp*i exp
and cnd Skip | Asgn of |oc*iexp

Seq of cnd*cnd
If of bexp*cnd*cnd
Wil e of bexp*cnd

where i nt, | oc, i op, and bop are suitable, predefined
datatypes of numbers, locations, integer operations and boolean
operations.

Slide 12

2.2 Structural induction

The principle ofStructural Inductiorfor some set of finite labelled trees says that to prove a
property holds for all the trees it suffices to show that

base casesthe property holds for each type of leaf node (regarded as a one-element tree);
and

induction step: for each tree constructar (takingn > 1 arguments, say), if the property
holds for any trees, , . .., t,, then it also holds for the tre€t,, ..., t,).

’

For example, the principle fdrC integer expressions is given on Slide 13. It should be clear
how to formulate the principle for other collections of syntax trees, such as the selL&f all
phrases.

2.2 Structural induction 13

Structural Induction for LC integer expressions

To prove that a property ®(E') holds for all LC integer
expressions F/, it suffices to prove:

base cases: ®(n) holds for all integers n. € Z, and ®(!/) holds
for all locations ¢ € L; and

induction step: for all integer expressions F/, E/' and operators
iop € Top, it ®(E) and ®(E’) hold, then so does
®(E iop E').

Slide 13

Structural induction can be justified by an appeal to Mathematical Induction, relying
upon the fact that the trees we are consideringiaree, i.e. each tree has a finite number of
nodes. For example, suppose we are trying to prove a prof¢ity holds for allLC integer
expressiong’, given the statements labelledse caseandinduction stepon Slide 13. For
eachn € N, define

' (n) L for all E with at mostn nodes®(FE) holds.

Since everyF has only finitely many nodes, we have
VE.®(E) & Vn € N.®' (n).

ThenVn € N.®'(n) can be proved by Mathematical Induction using base casesind
induction step on Slide 13. Indee@®’(0) holds automatically (since there are no trees with
0 nodes); and ift’(n) holds andE has at most + 1 nodes, then

e eitherE is a leaf—so tha®(F) holds by thebase caseassumption,

e or it is of the form E; iop Es—in which caseE; and E5 have at most: nodes
each, so byP’(n) we have®(FE;) and ®(F-) and henceb(F) by the induction
stepassumption.

Thus®’(n + 1) holds if ' (n) does, as required to complete the proof using Mathematical
Induction.
Here is an example of the use of Structural Induction.

14 2 INDUCTION

Example 2.2.1. SupposeF is anLC integer expression andis a state whose domain of
definition contains the locationsc(E) occurring inE. (Recall that arLC state is a finite
partial function from locations to integers.) Referring to the SMC-machine of Section 1.2,
we claim that there is an integerso that

(E-c,r,s) =" (¢,n-r,s)

holds for any control stack and intermediate results staek (In fact n is uniquely
determined by¥ ands, because the SMC-machine is a deterministic transition system.)

Proof. We have to prove/E.®(E), where® is defined on Slide 14, and we do this by
induction on the structure df.

Base cases:®(n) holds by theConstanttransition in Figure 1; and thieocationtransition
implies that®(!¢) holds withn = s(¢) (this is where we need the assumptibn(E) C
dom(s)).

Induction step: Supposeb(E;) and®(E5) hold. Then we have

((Ey iop E3) -c,r,s) — (E1 - Ey - iop - ¢, 1, s) by (Compound) in Fig. 1
—* (Ey - iop-c,nq -1, 8) for somen, by ®(E)
—* (iop - ¢c,ng -y -1, 8) for someny, by ®(FE5)
— (e,n -1, s) by (Operator) in Fig. 1,

wheren = ny iop ns.

(Note the way we chose the quantification in the definitio® bin the middle two— * of the
induction step we need to apply the ‘induction hypothesis’Bqrand E5 with control and
phrase stacks other than the onesthat we started with.)]

2.3 Rule-based inductive definitions 15

Termination of the SMC-machine on expressions

Define ®(F) to be:

Vs.loc(E) C dom(s) =
dnNe,r(E -c,r,s) =" (e,n-r,s).

where loc(E') denotes the finite set of locations occurring in E/
and dom(s) denotes the domain of definition of s.

Then
VE.®(E).

Slide 14

2.3 Rule-based inductive definitions

As well as proving properties by induction, we will need to constinductively defined
subsets of some given sdff, say. The method and terminology we use is adopted from
mathematical logic, where the theorems of a particular formal system are built up inductively
starting from some axioms, by repeatedly applying the rules of inference. In this case an
axiom a, just amounts to specifying an element T of the set. Arule, r, is a pair(H, c)

where

e H is afinite, non-emptysubset ofl" (the elements off are called thdwypothesesf
the ruler); and

e cis an element of’ (called theconclusiorof the ruler).

LA rule with an empty set of hypotheses plays the same role as an axiom.

16 2 INDUCTION

Inductively defined subset of aset T

Given axioms A and rules R over T', a proof is a finite tree with
nodes labelled by elements of 7' such that:

e each leaf-node is labelled with an axioma € A

e for any non-leaf node, if H is the set of labels of children of
the node and c is the label of the node, then (H, ¢) € R.

By definition, the subset of T’ inductively defined by the axioms
and rules (A, R) consists of those ¢ € T for which there is such
a proof whose root node is labelled by £.

Slide 15

Slide 15 gives the definition of the subsetinductively defined by such a collection
of axioms and rules, in terms of the notion opmof.! For example

is a proof tree provided, 5, tg, andt; are axioms and{ty,t2},t0), ({ts,t4},t2),
({t5,t6},t3), and({t7},t4) are rules. In this context we write such trees in the following
form

ts te tr

ts 14

The label of the root node of a proof tree is called toaclusionof the proof. If there is a
proof whose conclusion is we say that has a proof from the axioms and rulég, R), or

LIf one allows rules with infinitely many hypotheses, one must consider proofs that are not
necessarily finite trees, but aveell-foundedtrees—meaning that any path from a node towards the
tree’s leaves must be finite.

2.3 Rule-based inductive definitions 17

that it has alerivation or just that itis valid. The collection of all such is by definitionthe
subset of" inductively defined by the axioms and rules R).

Example 2.3.1 (Evaluation relation for LC expressions). Example 2.2.1 shows that the
SMC-machine evaluation @fC integer expressions depends only upon the expression to be
evaluated and the current state. Here is an inductively defined relation that captures this
evaluation directly (i.e. without the need for control and phrase stacks). We will extend this
to all LC phrases in the next section.

The evaluation relatiori}, is a subset of the set of all tripl€¢&’, s, n), whereE is anLC
integer expression, is a state, and is an integer. It is inductively defined by the axioms and
rules on Slide 16, where we use an infix notations |} n instead of writing(E, s, n) € |.

Here for example, is a proof that/ « 2) — 3, {¢ — 4} |} 5 is a valid instance of the
evaluation relation:

W, {l— 4}y 4 2,{6— 4}]2
W2, {l— 4}] 8 3,{{—4} |3
(1%2)—3,{6rs 4} U5 '

An evaluation relation for LC expressions

can be inductively defined by the axioms
n,s{n

W,s yn itl e dom(s) & s(f) =n

and the rules
Ei,5n1 Ea,slng
FEqiop Ea, sl n

if n = ny 10p N9

where E'1, F are LC integer expressions, s is a state, £ is a
location, and n1, ng, n are integers.

Slide 16

This is our first (albeit very simple) example of sdructural operational semantics.
Structural, because the axioms and rules for proving instances

(1) E.s|n

18 2 INDUCTION

of the inductively defined evaluation relation follow the structure of the expredsidfor if
(1) has a proof, we can reconstruct it from the bottom up guided by the structéareibfs is
an integer or a location the proof must just be an axiom, wherdgdssfcompound the proof
must end with an application of the corresponding rule.

Note. The axioms and rules appearing on Slide 16, and throughout the course, are meant to
be ‘schematic’—in the sense that, for example, there is one axiom of therfosrp n for

each possible choice of an integeand a state. The statements beginning ‘if ...” which
qualify the second axiom and the rule are often cadligi-conditionsThey restrict how the
schematic presentation of an axiom or rule may be instantiated to get an actual axiom or rule.
For example!/, s | n is only an axiom of this particular system for some particular choice of
location/, states, and integem, provided/ is in the domain of definition of and the value

of s at/isn.

Rule Induction

Given axioms A and rules R over a set T, let I be the subset of
T inductively defined by (A, R) (cf. Slide 15). Given a property
®(t) of elements t € T, to prove

Vt € 1.9(t)

it suffices to show

closure under axioms: ~ ®(a) holds for each a € A; and

hy---hy,
closure under rules: for each rule — €ER

B(h) & ... & B(hy) = B(c).

Slide 17

2.4 Rule induction

Suppose thatA, R) are some axioms and rules on a $eand that!l C T is the subset
inductively defined by them. The principle &ule Inductionfor I is given on Slide 17.

It can be justified by an appeal to Mathematical Induction in much the same way that we
justified Structural Induction in Section 2.2: the closurel/afinder the axioms and rules
allows one to prove

Vn € NVt € I. if t is the conclusion of a proof with at mostnodes, then

2.5 Exercises 19

®(t) holds
by induction onr. And since any proof is a finiteree, this shows thatt € I.®(t) holds.

Example 2.4.1. We show by Rule Induction thdt, s || n implies that in the SMC-machine
(E - c,p,s) —=* (¢,n - p, s) holds for any control stackand phrase stagk

Proof. So let®(E, s, n) be the property

*

vc:p'<E ey 3) - <c,n "D 3)'

According to Slide 17 we have to show thB{F, s, n) is closed under the axioms and rules
on Slide 16.

Closure under axioms: ®(n, s,n) holds by theConstanttransition in Figure 1; and if
¢ € dom(s) ands(¢) = n, then theLocationtransition implies tha® (4, s, n) holds.

Closure under rules: We have to show
®(Ey,s,n1) & ®(FEs, s,n3) = ®(Ey iop Es, s,n1 iop ny)

and this follows just as in thimduction step of the proof in Example 2.2.1.

2.5 Exercises

Exercise 2.5.1.Give an example of an SMC-machine configuration from which there is an
infinite sequence of transitions.

Exercise 2.5.2.Consider the subsé? of the setNNx N of pairs of natural numbers inductively
defined by the following axioms and rules

(n,0) € D
(n,n') € D
(n,n+n') € D

Use Rule Induction to prove
(n,n')eD = FkeN.n'=kxn

(wherex denotes multiplication). Use Mathematical Inductionkoto show conversely that
if n” = k*xnthen(n,n’) € D.

Exercise 2.5.3.Let (Config, —) be a transition system (cf. Slide 4). Give an inductive
definition of the subset of'onfig x Config consisting of the reflexive-transitive closure of
—. Use Mathematical Induction and Rule Induction to prove that your definition gives the
same relation as Definition 1.1.1(i).

This relies upon the fact that we are only considering rules with finitely many hypotheses. Without
this assumption, Rule Induction is still valid, but is not necessarily reducible to Mathematical Induction.

20

2

INDUCTION

21

3 Structural Operational Semantics

In this section we will give structural operational semantics forltidanguage introduced

in Section 1.2. We do this first in terms of an inductively defined transition relation and
then in terms of an inductively defined relation of evaluation. The induction principles of the
previous section are used to relate the two approaches.

3.1 Transition semantics ofL.C

Recall the definition oEC phrases P, on Slide 5. Recall also thatstate s, is by definition
a finite partial function from locations to integers; we include the possibility that the set of
locations at whicts is defined,dom(s), is empty—we simply writé) for this s.

We define a transition system (cf. Section 1.1) lidr whose configurations are pairs
(P, s) consisting of anLC phraseP and a states. The transition relation is inductively
defined by the axioms and rules on Slides 18, 19, and 20. In &alg) s[¢ — n] denotes
the state that mapsto n and otherwise acts like. Thusdom(s[¢ — n]) = dom(s) U {¢}
and

o n itr =g
sl = (€)= {s@') i # L& € dom(s)

Note that the axioms and rules foP, s) — (P’,s’) follow the syntactic structure of the
phraseP. There are no axioms or rules for transitions frof s) in caseP is an integer, a
booleangskip, or in caseP = !/ where/ is a location not in the domain of definition ef
The first three of these alternatives are defined to beterminal configurationsthe fourth
alternative is a basic example osauckconfiguratior? This is summarised on Slide 21.

20One can rule out stuckC configurations by restricting the set of configurations to consist of all
pairs(P, s) satisfying that the domain of definition of the stateontains all the locations that occur in
the phraseP; see Exercise 3.4.4.

3 STRUCTURAL OPERATIONAL SEMANTICS

LC transition relation — expressions

(Toc) (1,s) = (n,s) ifl € dom(s) & s(f) =n

N (Eq,s) = (B, 8"
(opT)
(Ey op E3,s) — (B op E, s')
Es,s) — (EL, ¢
=) (B2, 8) = (B, 8)
<TL1 op EQa S> — <’I’L1 op E2a51>
(opd) (nq op na, s) — (c,s) ifc=my opng

Slide 18

LC transition relation — := and ;

(E,s) = (E', s

—
(setl)
((:=E,s) = ({:=F"5)
(set2) (£:=n,s) — (skip, s[¢ — n)])
(_>) <Cla S> — <C{a SI>
seql

! (C1 5 Cays) = (CL 3 Ca, ')

(sea?) (skip; C,s) = (C,s)

Slide 19

3.1 Transition semantics atC

L C transition relation — conditional & while

(B,s) — (B',s")

(if B then C| else Cy, s) —
(if B’ then C] else Cy, s')

(E)) (if true then C else Cy, s) — (C4, s)
(i) (if false then C; else Cs, s) — (Cs, s)

(wnl) (while B do C, s) —
(if B then (C ; while B do C) else skip, s)

Slide 20

Terminal and stuck LC configurations

The terminal configurations are by definition

(n,s) (true,s) (false,s) (skip,s).

A configuration (P, s) is stuck if and only if it is not terminal, but
(P, s) -+ .

(For example, (14 4+ 1),{¢' — 1}) is stuckif £ # £.)

Slide 21

23

24 3 STRUCTURAL OPERATIONAL SEMANTICS

An example of a sequence of valid transitions is given on Slide 22. Compared with
the corresponding run of the SMC-machine given on Slide 7, each transition is doing some
real computation rather than just symbol juggling. On the other hand, the validity of each
transition on Slide 7 is immediate from the definition of the SMC-machine, whereas each
transition on Slide 22 has to be justified with a proof from the axioms and rules in Slides 18—
20. For example, the proof of the second transition on Slide 22 is:

—
loc

(14, s) — (4, s)

(opT)
(0>0,5) = (4>0,s)

).

(if 14 > 0 then (C' ; C) else skip, s) —
(if 4 > 0 then (C'; C) else skip, s)

Luckily the structural nature of the axioms and rules makes it quite easy to check whether a
particular transition P, s) — (P’, s') is valid or not: one tries to construct a proof from the
bottom up, and at each stage the syntactic structure dictates which axiom or rule must
have been used to conclude that transition.

(C,s) — (if B then (C’; C) else skip, s)

if 4 > 0 then (C’; C) else skip, s)
if true then (C'; C) else skip, s)
C';C,s)

* (skip, s[f — 0,0 s 24])

o~~~

.
o
.
o
.

~

4t while B do O,

f
“hyso,
def

C' =0 =Ux:0:=1—1,
def

s ={l—40 1},

o Q

where <

Slide 22

3.1 Transition semantics atC 25

Some properties of LC transitions

Determinacy. If (P, s) — (P’ s') and (P, s) — (P",s"),
then P’ = P" and s’ = s".
Subject reduction. If (P, s) — (P’,s’), then P’ is of the same

type (command/integer expression/boolean expression) as P.

Expressions are side-effect free. If (P, s) — (P’, ') and P
is an integer or boolean expression, then s = s’.

Slide 23

Some properties of theC transition relation are stated on Slide 23. They can all be
proved by Rule Induction (see Slide 17). For example, to prove the transition system is
deterministic define the properfy(P, s, P’, s") to be

(P,s)y =5 (P',s"Y & VP" s"(Ps)— (P)= (P =P'&s =3s").

We wish to prove that every valid transitidi®, s) — (P’, s’) satisfiesd(P, s, P’, s’), and
by the principle of Rule Induction it suffices to check tddtP, s, P’, s') is closed under the
axioms and rules that inductively defire. We give the argument for closure under rule
(ﬁ) and leave the other cases as exercises.

Proof of closure under rul€sert’). Suppose®(E, s, E', s') holds. We have to prove that
®(L:=FE,s,L:=F' s) holds, i.e. thaf/:= FE,s) — (¢:= FE’,s") (which follows from
®(E, s, E', s') by (see7')), and that if

(2) (£:=FE,s) — (P",s")

thenP” = ({:= E') ands” = s'.

Now the last step in the proof of (2) can only be b@(?) or (ﬁ) (because of the
structure off := F). But in fact it cannot be byZet—f) since thenZ would have to be some
integern; so(E,s) - (cf. Slide 21), which contradict®(F, s, E’,s’).* Therefore the

*See Remark 3.1.1.

26 3 STRUCTURAL OPERATIONAL SEMANTICS

last step of the proof of (2) useﬂ?) and hence

(3) P'=¢:=E"
for someE" satisfying

(4) (E,s) — (E",s").

Then by definition ofb(F, s, E’, s'), (4) implies thatE’ = E” ands’ = s’, and hence also
by (3) thatP” = ¢:= E"” = ¢:= E’. Thus we do indeed hawe(/ := E,s./:=E',s'), as
required.]

Remark 3.1.1. Note that some care is needed in choosing the property when applying Rule
Induction. For example, if we had defin@d P, s, P’, s’) to just be

VP s (P,s) — (P",s") = (P' = P" & ' = 5")

what would go wrong with the above proof of closure under riei()? [Hint: look at the
point in the proof marked with &.]

3.2 Evaluation semantics of.C

Given anLC phraseP and a state, since the_C transition system is deterministic, there is a
unique sequence of transitions starting froR) s) and of maximal length:

<P, S> — <P1,81> — <P2,82> — <P3, 33> — ..

We call this theevaluation sequenctr (P, s). In general, for deterministic languages
there are three possible types of evaluation sequence, shown on Slide 24.C,Ftre

stuck evaluation sequences can be avoided by restricting attention to ‘sensible’ configurations
satisfyingloc(P) C dom(s): see Exercise 3.4.4.C certainly possesses divergent evaluation
sequences—the simplest possible example is given on Slide 25. In this section we give a
direct inductive definition of the terminating evaluation sequences, i.e. of the relation

(P,s) —* (V. s) (V, sy terminal.

3.2 Evaluation semantics bf

Types of evaluation sequence
(P,s) = (P1,s1) = (P, 89) — ...

Terminating: the sequence eventually reaches a terminal
configuration (cf. Slide 21).

Stuck: the sequence eventually reaches a stuck configuration.

Divergent: the sequence is infinite.

Slide 24

A divergent command

For C % while true do skip we have

(C,s)

(if true then (skip ; C) else skip, s)
(skip ; C, s)

(C,s)

L4 4l

Slide 25

27

28 3 STRUCTURAL OPERATIONAL SEMANTICS

TheLC evaluation relationwill be given as an inductively defined subse{ &fhrases x
States) x (Phrases x States), written with infix notation

(5) (P, s) 4 (V. s").

The axioms and rules inductively defining (5) are given in Figure 2 and on Slide 26. Note
that if (5) is derivable, therV, s’) is a terminal configuration (this is easily proved by Rule
Induction).

Evaluation rules for while

(B, s) | (true, s’y (C,s') | (skip, s”)
(while B do C,s") |} (skip, s")
(U’whl)

(while B do C, s) |} (skip, s")
(B, s) || (false, s')

(‘Uth) . .
(while B do C, s) || (skip, s)

Slide 26

As for the transition relation, the axioms and rules defining (5) follow the structufe of
and this helps us to construct proofs of evaluation from the bottom up. Given a configuration
(P, s), sincel} collapses whole sequences of computation steps into one relation (this is made
precise below by the Theorem on Slide 27) it may be difficult to decide for which terminal
configuration(V, s’) we should try to reconstruct a proof of (5). It is sometimes possible to
deduce this information at the same time as building up the proof tree from the bottom—
an example of this process is illustrated in Figure 3. However, the fact (which we will not
pursue here) thdtC is capable of coding any partial recursive function means that there is
no algorithm which, given a configuratig®, s), decides whether or not there exigis s’)
for which (5) holds.

We have seen how to exploit the structural nature otthevaluation relation to construct
proofs of evaluation. The following example illustrates how to prove that a configuddies
notevaluate to anything.

3.2 Evaluation semantics bf

29

Veon) (e8) U (c,;s) (c€ ZUB)
(‘U’loc) <'£7 5> U’ <n7 5> if £ S dom(S) & S(E) =n

(B1,s) |} (n1,8") (B8 (ng,s") where ¢ is the value
(Uop) of ny op no (for op an

(E1 op Ea,s) 4 (c,s") integer or boolean operation)

(uskip) <Skip7 S> U’ <Skip7 S>
(E,s) | (n,s")

(et (£:=E,s) | (skip, s'[¢ — n])

(C1,s) | (skip, s’) (Csq,s") || (skip, s”)
(useq) .

<Cl 3 CZ? S> U <Sk1p7 SH>

(B,s) | (true,s’) (Cy,s") | (skip,s”)
(Uigr) : .

(if B then C| else Cy, s) || (skip, s”)

(B,s) |l (false,s’) (Ca,s") | (skip,s")
(Vig2)

(if B then C| else Cs, s) || (skip, s”’)

plus rules ({},,,1) and ({},,,2) on Slide 26.

Figure 2: Axioms and rules for LC evaluation

30 3 STRUCTURAL OPERATIONAL SEMANTICS

C “while!/>0dol:=0

For def
s ={l{—1}

we try to find s” such that (C, s) || (skip, s”) is provable. Since (£ > 0, s) |} (true, s)

(proof shown below), the last rule used in the proof must be ({,1):

U’loc U’con ? ?
<'z7 8>U<175> () <073>U'<073> ()) . .

(£ >0,s) | (true, s) (£:=0,s) | (skip, s’y (C,s") | (skip, s”)
(C, s) | (skip, s")

(Fen)

for some s’ and s”. The middle hypothesis of ({,,;) must have been deduced using
(get)- SO 8" = {¢ — 0} and we have:

N U oc NN U’con . Ucon ?
(16> 0,5) | (true, s) T =0,5) | (skip,s) " (C.s') |l (skip, s")

(C,5) I {skip, s")

(Uwn)-

Finally, since (I > 0,s') || (false, s’) (proof shown below), the last rule used in the
proof of the right-hand branch must be ({,2).- So s’ = s = {¢{ — 0} and the
complete proof is:

(oe) (Foos) T m (1oe) W Eﬁcon))
(1,5) (1, 5) loc (0,5) U0, s) con (0,5) 1 (0, s) COIE) (16> 0,5') | (false, s') : op
(> 0,5) | (true,s) P =0.5) | (skip.s) (C,s") I (skip, s') w)hz
whl/*

(C. s) |} (skip, s")

Figure 3: Reconstructing a proof of evaluation

3.3 Equivalence dfC transition and evaluation semantics 31

Example 3.2.1. ConsiderC L while true do skip and any state. We claim that there
is nos’ such that

(6) (C.s) | (skip. s')

is valid. We argue by contradiction. Suppose (6) has a proof. Then by the Least Number
Principle (see Slide 10), amongst all the proof trees with (6) as their conclusion, there is one
with a minimal number of nodes—callR. Because of the structure 6f, the last part ofP

can only be

. P’
(true,) U (true.s)) (eldp.) § (skip. 3 o) (C, s)) {skip, 5')

(C,s) | (skip, s')

whereP’ is also a proof of (6). BufP’ is a proper subtree dP and so has strictly fewer
nodes than it—contradicting the minimality property®f So there cannot exist any for
which (C, s) | (skip, s") holds. O

(Vn1)

Equivalence of
L C transition and evaluation semantics

Theorem. For all configurations (P, s) and all terminal
configurations (V, s’)

(P,s) | (V") & (P,s) =*(V,s).

Three part proof:

@ (P,s)(V,s') = (Ps) =" (V,s)
b) (P,s)— (P,s") & (P, ') L (V,s") = (P,s) | (V,s")
© (P,s) =" (V,s') = (P,s) | (V,5')

Slide 27

3.3 Equivalence ofLC transition and evaluation semantics

The close relationship between th€ evaluation and transition relations is stated in the
Theorem on Slide 27. (Recall from 1.1.1(i) that* denotes the reflexive-transitive closure
of —.) As indicated on the slide, we break the proof of the Theorem into three parts.

32 3 STRUCTURAL OPERATIONAL SEMANTICS

Proof of (a) on Slid&7. Let®(P, s, V,s’) be the property
(P,s) =* (V,s') & (V,s') is terminal.

By Rule Induction, to prove (a) it suffices to show tRatP, s, V, s’) is closed under the
axioms and rules inductively defining We give the proof of closure under rulg.(;) and
leave the other cases as exercises.

SO0 suppose
(7) (B, s) —* (true, s’)
(8) (C,s"y —* (skip, ")
9) (while B do C,s") —* (skip, s").

We have to show that

(while B do C, s) —* (skip, s").
Writing C’ for while B do C, using the axioms and rules inductively definirgwe have:

(while B do C, s)

— (if B then (C ;") else skip, s) by (whl')
—* (if true then (C ; C’) else skip, s') by (itr)* on (7)
— (C;C", s by (ii2)
—" (skip; C", ") by (seat’)* on (8)
— (. s") by (sea?)
— (skip, ") by (9)
as required.]

Proof of (b) on Slid&7. Let (P, s, P’,s") be the property
V(V, 8"V AP, ") U (V,s") = (P,s) | (V,s").

By Rule Induction, to prove (b) it suffices to show thtP, s, P’, s’) is closed under the
axioms and rules inductively defining. We give the proof of closure under rulef) and
leave the other cases as exercises.

So writing C’ for while B do C we have to prove¥(C’, s,if B then (C ;
C") else skip, s) holds for anys, i.e. that for all terminalV, s”’)

(10) (if B then (C ;') else skip, s) || (V, s")
implies
(11) (C',s) 1 (V,s").

But if (10) holds it can only have been deduced by a proof ending with eithgd Or ({;¢,)-
So there are two cases to consider:

3.3 Equivalence dfC transition and evaluation semantics 33

Case (10) was deduced byl(s) from
(12) (B, s) || (true, s’)
for some state’ such that

(€0 s") BV, s")
which in turn must have been deduced By.() from

(13) (C,s') | (skip, ")
(14) (C’, 5" || (skip, s")

for some state’”’. Hencel” = skip and applying { ;) to (12), (13), and (14) yields (11),
as required.

Case (10) was deduced byl(s,) from

(15) (B, s) | (false, s')
(16) (skip, s') I (V. s")

for some state’. Now (16) can only have been deduced usifig (), soV = skip and
s" = s'. Then (},,5) applied to (15) yields (11), as required. O

Proof of (c) on Slid&7. Applying property (b) repeatedly, for any finite chain of transitions
(P,s) = ...— (P',s") we have thatP’, s') || (V,s”) implies(P, s) || (V. s"). Now since
(V,s") is terminal it is the case thaV/, s”) || (V. s”). Therefore taking P’, s’y = (V,s")

we obtain property (c).]

In view of this equivalence theorem, we can deduce the propertiggiven on Slide 28
from the corresponding properties-ef given on Slide 23. Alternatively these properties can
be proved directly using Rule Induction f¢r

We conclude this section by stating, without proof, the relationship betw€evalua-
tion and runs of the SMC-machine (cf. Section 1.2).

Theorem 3.3.1.For all configurations(P, s) and all terminal configurationgV, s’), (P, s) |
(V, s') holds if and only if

either P is an integer or boolean expression and there is a run of the SMC-machine of the
form (P - nil, nil, s) —* (nil, V - nil, s);

or P is a command)V = skip and there is a run of the SMC-machine of the form
(P - nil, nil, s) —* (nil, nil, s’).

34 3 STRUCTURAL OPERATIONAL SEMANTICS

Some properties of LC evaluation

Determinacy. If (P, s) || (V,s") and (P, s) |} (V’,s"), then
V=V"ands =s".

Subject reduction. If (P, s) {} (V, s’), then V is of the same
type (command/integer expression/boolean expression) as P.

Expressions are side-effect free. 1f (P, s) | (V,s") and P is
an integer or boolean expression, then s = s’.

Slide 28

3.4 Exercises

Exercise 3.4.1.By analogy with rules §p1), (5et7), (seat’), and (e’) on Slides 18-20, why
is there not a rule
(B,s) — (B',s")
?
(while B do C, s) — (while B’ do C, s')
Use this rule (together with the other ones) to derive some transitions that look incorrect

compared with the intuitive meaning of while loops (Slide 8) or with the behaviour of the
SMC-machine.

Exercise 3.4.2.Let LC' be the language obtained frdng by adding a new commarnekit
whose intended behaviour is to immediately abort execution of the smallest encidsilg
loop (if any) and return control to the following commands (if any). For example, if

¢ while 1 > 0 do
(while true do
(£:=W—1;if I/ < 0 then exit else skip))
then the configuration(C,{¢+— 1}) should evaluate to the terminal configuration

(skip, {¢ — —1}), whereas(exit ; £:= 0, {{ — 1}) should evaluate to the configuration
(exit, {£ — 1}).

3.4 Exercises 35

Give an inductively defined evaluation relation fo€’, |}’, that captures this intended
behaviour. It should be of the form

(Ps) I/ (V. s")

whereP is anLC’ phrases, s’ are states, andl ranges oveBU Z U {skip, exit}. It should
extend the evaluation relation foC in the sense that iP does not involve any occurrences
of exit then

(P,s) |/ (V,s") & (P,s) | (V,s).

Check that your rules do give the two evaluations mentioned above.

Exercise 3.4.3.Try to devise a transition semantics 10€'°° extending the one fdrC given
in Section 3.1.

Exercise 3.4.4.Call anLC configuration(P, s) sensiblef the set of locations on whichis
defined,dom(s), contains all the locations that occur in the phr&sé’rove by induction on

the structure ofP that if (P, s) is sensible, then it is not stuck. Prove by Rule Induction for

— thatif (P, s) — (P', s’) and(P, s) is sensible, then so ig°’, s') anddom(s’) = dom(s).
Deduce that a stuck configuration can never be reached by a series of transitions from a
sensible configuration.

Exercise 3.4.5.Use Rule Induction to prove each of the statements on Slide 23; in each
case define suitable properti@sP, s, P’, s’) and then check carefully that the properties are
closed under the axioms and rules defintag Do the same for the corresponding statements
on Slide 28, using Rule Induction for the axioms and rules defifjing

Exercise 3.4.6.Complete the details of the proofs of properties (a) and (b) from Slide 27.

Exercise 3.4.7. Prove Theorem 3.3.1.

36

3 STRUCTURAL OPERATIONAL SEMANTICS

37

4 Semantic Equivalence

One of the reasons for wanting to have a formal definition of the semantics of a programming
language is that it can serve as the basis of methods for reasoning about program properties
and program specifications. In particular, a precise mathematical semantics is necessary for
settling questions o$emantic equivalencef program phrases, in other words for saying
precisely when two phrasdsave the same meaningThe different styles of semantics
mentioned on Slide 3 have different strengths and weaknesses when it comes to this task.

In anaxiomaticapproach to semantic equivalence, one just postulates axioms and rules
for semantic equivalence which will include the general properties of equality shown on
Slide 29, together with specific axioms and rules for the various phrase constructions. The
importance of the Congruence rule cannot be over emphasised: it lies at the heart of the
familiar process ofequational reasoningvhereby an equality is deduced in a number of
steps, each step consisting of replacing a subphrase by another phrase already known to be
equal to it. (Of course stringing the steps together relies upon the Transitivity rule.) For
example, if we already know th&€ ; C') ; C"” andC'; (C" ; C"') are equivalent, then we can
deduce that

while B do ((C;C");C") and while B do (C;(C";C"))

are too, by applying the congruence rule with-] = while B do —. Note that while
Reflexivity, Symmetry and Transitivity are properties that can apply to any binary relation on

a set, the Congruence property only makes sense once we have fixed which language we are
talking about, and hence which ‘contex§| are applicable.

How does one know which language-dependent axioms and rules to postulate in an ax-
iomatisation of semantic equivalence? The approach we take here is to regard an operational
semantics as part of a language’s definition, develop a notion of semantic equivalence based
on it, and then validate axioms and rules against this operational equivalence. We will illus-
trate this approach with respect to the language

38

4 SEMANTIC EQUIVALENCE

Basic properties of equality

Reflexivity P=P

P =P
Symmetry _

P=P

P — Pl Pl — PI/
Transitivity

pP=p"
P="PF

Congruence e —

C[P] =C[P]

where C[P] is a phrase containing an occurrence of P and C[P'] is the
same phrase with that occurrence replaced by '

Slide 29

Definition of semantic equivalence of LC phrases

Two phrases of the same type are semantically equivalent

P =P

if and only if for all states s and all terminal configurations (V, s”)

(Pr,s) L (V,s") & (Py,s) | (V,s).

Slide 30

4.1 Semantic equivalence bf phrases 39

4.1 Semantic equivalence dfC phrases

It is natural to say that twd.C phrases of the same type (i.e. both integer expressions,
boolean expressions, or commands) seenantically equivalent evaluating them in any

given starting state produces exactly the same final state and value (if any). This is formalised
on Slide 30. Using the properties b evaluation stated on Slide 28, one can reformulate
the definition of~ according to the type of phrase:

e Two LC commands are semantically equivaleat; = Cs, if and only if they
determine the same partial function from states to states: foy, &fither (C, s) #
& (Cy, s) J,0or(Cy,s)) (skip, s') & (Cy, s) || (skip, s’) for somes’.

e Two LC integer expressions are semantically equivalénit,= Fs, if and only if
they determine the same partial function from states to integers: for, alther
(E1,s) } & (Eq,8) §},0r(Ey,s) | (n,s) & (E,s) | (n,s) for somen € Z.

e Two LC boolean expressions are semantically equival&nt,>~ B, if and only if
they determine the same partial function from states to booleans: far elther
(By,s) § & (Ba,s) J},or(By,s){ (b,s) & (Ba,s) | (b, s) for someb € B.

Slide 31 spells out what is required to show that i commands ar@ot semantically
equivalent; we write”'; 2* Cs in this case. There are similar characterisations of semantic
inequivalence fot.C integer and boolean expressions.

Semantic inequivalence of LC commands

To show Cq 2 Cy, it suffices to find states s, s’ such that
either (Cq,s) |} (skip, s’) and (Cy, s) J (skip, s'),
or (C1,s) ¥ (skip, s’) and (Cy, s) |} (skip, s)

E.g. (Exercise 4.3.2) when C = skip, C' = while true do skip,
C"=(:=1)and B = (14 =0), then

C";(if B then C else C') 2 if B then (C";C) else C";C")

Slide 31

40 4 SEMANTIC EQUIVALENCE
Example 4.1.1.

(if B then C else C'); C" = if B then (C;C") else (C'; C")

Proof. Write

¢y %' (if B then C else ') ; C"

Co % if B then (C';C") else (C”; C").

We exploit the structural nature of the rules in Figure 2 that inductively definel.¢he
evaluation relation (and also the properties listed on Slide 28, in order to mildly simplify
the case analysis). If it is the case th@t, s) || (skip, s’), because of the structure 6f

this must have been deduced usiljg,(). So for somes” we have

(17) (if B then C else C', s) |} (skip, s”')
(18) (C",s") || (skip, s').

The rule used to deduce (17) must be eitlgf, § or (;¢5)- SO
(19) either (B,s) || (true,s) & (C,s) || (skip, s”),
or (B, s) || (false, s) & (C', s) || (skip, s"')

(where we have made use of the fact that evaluation of expressions is side-effect free—
cf. Slide 28). In either case, combining (19) with (18) and applying () we get

(20) either (B,s) | (true,s) & (C; C",s) || (skip, s),
or (B, s) || (false, s) & (C"; C",s) || (skip, s').

But then (};¢,) or (U;) applied to (20) yield$C>, s) |} (skip, s’) in either case.

Similarly, starting from(C5, s) |} (skip, s’) we can deducéC, s) || (skip, s’). Since
this holds for any, s’, we haveC; = (5, as required. O

Slide 32 lists some other examples of semantically equivalent commands whose proofs
we leave as exercises.

4.1 Semantic equivalence bf phrases 41

Examples of
semantically equivalent LC commands

C ;skip = C = skip; C
(C;C);C"=C; (00"
if true then C else C' = C
if false then C else C' = ('

while B do C = if B then C ; (while B do C)

else skip
(=m0 —n =~ f’:n’;f::n iff;éﬁ’
. — 9 - - E = n/ |f£ — E,.
Slide 32

Theorem 4.1.2. LC semantic equivalence satisfies the properties of Reflexivity, Symmetry,
Transitivity and Congruence given on Slig@

Proof. The only one of the properties that does not follow immediately from the definition
of = is Congruence:

P =P = C[P1]§C[P2]

Analysing the structure of ofC contexts, this amounts to proving each of the properties
listed in Figure 4. Most of these follow by routine case analysis of proofs of evaluation,
along the lines of Example 4.1.1. The only non-trivial one is

Cl = Cz = while B do Cl =~ while B do CQ

the proof of which we give.

42 4 SEMANTIC EQUIVALENCE

For commands: if C; = C, then for all C' and B

C1;C = 0y C

C;Cl = C;Cz
if B then C; else C = if B then (5 else C
if B then C else C; = if B then C else (5

while B do (while B do Cs.

For integer expressions: if £y = F, then for all / and E

EZ:El = EZ:EQ
EiopE =2 EsopE
Eop E1 = E op Es.

For boolean expressions: if B; = B, then for all C' and C’

if By then C else C’
while B, do C.

if By then C else C’
while B; do C

111

Figure 4: Congruence properties of LC semantic equivalence

Proof of

C:2£Cy = while Bdo C; £ while B do (s

is via:
Lemma. If C'7 = (U9, thenforalln > 0
Vm < n.Vs,s'.
(ty) (while B do C1,s) —™ (skip, s')
= (while B do Cy, s) —* (skip, s')

(where —™ means the composition of 1 transitions and —* means

—"™ holds for some m > 0).

Slide 33

4.1 Semantic equivalence bf phrases 43

If suffices to show that if'; = C5 then
(21) Vs,s' . (while B do Cy, s) || (skip, s') = (while B do Cs, s) || (skip, s').

The recursive nature of thehile construct (rule {,,,,;) in particular) makes it difficult to

give a direct proof of this (try it and see). Instead we resort to the theorem given on Slide 27
which characterises evaluation in terms of the transition relationUsing this theorem,

to prove (21), it suffices to prove the Lemma on Slide 33. We do this by Mathematical
Induction onn. The base case = 0 is vacuously true, since—?" means =’ and
(while B do C4,s) # (skip,s’). For the induction step, suppose th@t = C,, that

(t,,) holds, and that we have

(22) (while B do Cy, s) =" (skip, s').

We have to prove thatwhile B do Cs, s) —* (skip, s').
The structural nature of the rules inductively generatimggiven on Slides 18-20) mean
that the transition sequence (22) starts off with an instance of axla—ﬁ\)(

(while B do Cy, s) — (if B then C; ; W, else skip, s) —" (skip, s')

where we writelV; for while B do C; (i = 1,2). Now there are two cases according to
how B evaluates.

Case(B, s) —* (true, s). Then (22) looks like

(Wy,s) — (if B then C; ; W; else skip, s)

—* (if true then C ; W; else skip, s)

— <Cl ; Wl./ 8>

—* (skip ; W1, ")

— <W1, SN>

—™ (skip, s')
for somes” and somen < n (less than or equal te — 2, in fact). Since {,,) holds by
assumption, we hav@Vs, s”) —* (skip, s’). Furthermore, the transition&’; ; Wy, s) —*
(skip ; W1, s”) in the middle of the above sequence must have been deduced by applying
rule (seq?’) to (C1., s) —* (skip, s”). SinceCy = Oy, it follows that(Cy, s) —* (skip, s”)
and hence by rule £qf) also that(Cy ; Wy, s) —* (skip; Wy, s”). Therefore we can

construct a transition sequence structured like the one displayed above which shows that
(W, s) —* (skip, s'), as required.

Case(B, s) —* (false,s). Then (22) looks like

(Wy,s) — (if B then C; ; W, else skip, s)
—* (if false then C ; W else skip, s)
— (skip, s)

44 4 SEMANTIC EQUIVALENCE

(and in particulas’ = s). But this sequence does not depend upon the evaluation behaviour
of Cy and equally we hav@V,, s) —* (skip, s), as required.]

LC!o: | C+ block structured local state

Phrases: P :=C | E | B
Commands:

C == skip|{:=FE|C;C|if BthenC elseC
while B do C | | begin loc/:= E; C end

Integer expressions: E ::=n | W | Eiop E

Boolean expressions: B ::=b | E bop E

Slide 34

4.2 Block structured local state

Because of the need to control interference between the state in different program parts, most
procedural languages include the facility for declarations of locally scoped locations (program
variables) whose evaluation involves the dynamic creation of fresh storage locations. In this
section we consider semantic equivalence of commands involving a particularly simple form
of suchlocal state begin loc/:= E; C end, in which the life time of the freshly created
location correlates precisely with the textual scope of the declaration: the loéasioreated

and initialised with the value aF at the beginning of the program ‘block’ and deallocated

at the end of the block. We call the language obtained ftdivby adding this construct
LC'¢: see Slide 34. Taking configurations to be as before (i.e. (command,state)-pairs), we
can specify the operational semantics.6f°°by an evaluation relation inductively defined

by the rules in Figure 2 and Slide 26, together with the rule for blocks on Slide 35.

4.2 Block structured local state 45

Evaluation rule for blocks

(E,s) U (n,s)
(C[¢'/0),8'[¢' — n]) I (skip, s"[¢' + n'])

(Ubs) . . *
(begin loc/:= E; C end, s) | (skip, s”)

xif ¢/ ¢ dom(s") U dom(s”) and ' does not occur in C'.

C[¢' /4] indicates the LC°® command obtained from C' by
replacing all occurrences of £ with £’

Slide 35

Example 4.2.1. To see how rulelf, ;) works in practice, consider a command to swap the
contents of two locations using a temporary location that happens to have the same name as

a global one.
o begin loc/:=4y; /1 := {5 ;{5 := !/ end.

Here we assumé, /., /5 are three distinct locations. Then for all statesvith 4,1,/ €
dom(s) we have
(C.5) U (skip, s[t1 — (L), £2 > s(£1)]).

and in particular the value stored/ain the final states[/; — s(¢3), 42 — s(£1)] (if any) is
the same as itis in the initial state

Proof. Letn; = s(¢;) (i = 1,2) and
51 5[0y = mal, sy Y s[ly g, by > ma]

and choose any/ ¢ {/,¢1,45}. Then

‘U’O(‘. UO(‘,
(Mo, s[l' = nq]) I (na, s[t' — n4]) (broc) (W s1[= na]) U (na, s1[€ — na) (h (L)
" (b =g, [0 > m)) | (sKip, 51 [0 o> m]) 0 (fy =, s1[¢' > ny]) | (skip, sa[f > m1]) *“‘)
(61, 8) U (na,s) (01 =10y £y =10, s[¢" > ny]) § (skip, so[€' > n1]) e

U’bs)'

(begin loct :=4y; {1 :=5; ¢y :=!l end, s) || (skip, s»)

is a proof for the claimed evaluation.]

46 4 SEMANTIC EQUIVALENCE

The definition of semantic equivalence fio€'°¢ phrases is exactly the same as ff@r
(see Slide 30). Slide 36 gives an example of semantically equivia@fft commands.

Example of semantically equivalent LC'°¢ commands

[Cf. Tripos question 1999.5.9]

If £ # ¢, then
(beginloc/:=FE; {':=!/end) = (/' :=E)

What happens if £ = ¢'?

Slide 36

Proof of the equivalence on Sli@6. Given any states ands’, suppose
(23) ((beginloc/:= FE; ¢’ := !/ end), s) |} (skip, s').
This can only have been deduced by applying rile) to

(24) (E,s) I (n,s")
(25) ({0 =" """ — n)) | (skip, s'[{" — n'])

for somen, n’ ands” with ¢ ¢ dom(s") U dom(s") U {£,¢'}. Note that for this to be a
correct application of{{;), we need to know that+# ¢’. (What happens in cage= ¢'? See
Exercise 4.3.4.)

Now (25) can only hold because

(26) s'=5"[(/ —n] and n' =n.

Applying ({}.;) from Figure 2 to (24) yields¢' := E, s) |} (skip, s”’[¢' — n]) and hence by
(26) that

(27) (/' .= E,s) | (skip, s).

4.3 Exercises 47

Thus (23) implies (27) for any, s’ and so we have proved half of the bi-implication needed
for the semantic equivalence on Slide 36. Conversely, if (27) holds, it must have been
deduced by applying|(..) to (24) withs’ = s”[¢' +— n] for somen and s”; in which

case (25) holds and hence Hy,() (once again using the fact théat£ /') so does (23). O

4.3 Exercises

Exercise 4.3.1.Prove theLC semantic equivalences listed on Slide 32.

Exercise 4.3.2.Show by example that theC command”' ; (if B then C’ else C") is not
semantically equivalent tif B then (C; C’) else (C ; C") in general. What happens if
the locations assigned to (i are disjoint from the locations occurring inc(B)?

Exercise 4.3.3.Prove the properties listed in Figure 4.

Exercise 4.3.4.Show by example thabegin loc/:= E; /' := !/ end is not necessarily
semantically equivalent t6 := F in the case that and/’ are equal.

48

4 SEMANTIC EQUIVALENCE

49

5 Functions

In this section we consider functional and procedural abstractions and the structural opera-
tional semantics of two associated calling mechaniswei-by-nameandcall-by-value To

do this we use a Language of (higher order) Functions and Procedures lddlgeithat com-
binesLC with the simply typed lambda calculysf. Winskel 1993, Chapter 11 and Gunter
1992, Chapter 2)LC phrases were divided into three syntactic categories—integer expres-
sions, boolean expressions, and commands. By contrast, the grammar on Slide 37 specifies
the LFP syntax in terms of a single syntactic categoryeapressionsvhich later we will

classify into different types using an inductively defined typing relation.

The major difference betwedrFP andLC lies in the last three items in the grammar
on Slide 37. LFP hasvariables z, standing for unknowrLFP expressions and used as
parameters in function abstractions. The expresaianV/ is afunction abstractior-a way
of referring to the function mapping to M without having to explicitly assign it a name;
it is also a procedure abstraction, because we will identify procedures with functions whose
bodiesM are expressions of command type. Finally M’ is an expression denoting the
application of a functior\/ to an argumend/’.

LFP also generalisesC in a number of more minor ways. FirdtFP has a branching
construct for all types of expression, rather than just for commands. Secondly, locdjions (
are now first class expressions whereak@nthey only appeared indirectly, via assignment
commands{ := E) and look-up expression#/}; furthermore, compound expressions are
allowed in look-ups and on the left-hand side of assignment.

Note. What we here call ‘variables’ are variables in the logical sense—placeholders standing
for unknown quantities and for which substitutions can be made. In the context of program-
ming languages they are often called ‘identifiers’, because what we here refer to as locations
are very often called ‘variables’ (because their contents may vary during execution and be-
cause it is common to use the name of a storage location without qualification to denote
its contents). What we here call ‘function abstractions’ are also céimthda abstractions
because of the notation:. M introduced by Church in his lambda calculus—see the Part IB
course orfFoundations of Functional Programming

50 5 FUNCTIONS

Expressions of the LFP language

M:=n|b|Ll]| Miop M| M bop M
| if M then M else M |!\M | M :=M
| skip | M ; M | while M do M
|z | e M | M M
where
x €V, an infinite set of variables,
n € Z (integers), b € B (booleans), £ € 1L (locations),

10p € [op (integer-valued binary operations), and bop € Bop
(boolean-valued binary operations).

Slide 37

5.1 Substitution and«-conversion

When it comes to function application, the operational semantids8fwill involve the
syntactic operatior/[M’/z] of substituting an expressiol/’ for all free occurrences of
the variablex in the expressiod/. This operation involves several subtleties, illustrated on
Slide 38, which arise from the fact thaf — Az. M is a variable-binding operation. The
occurrence of: next to\ in Ax. M is abinding occurrencef the variabler whosescopeis

the whole syntax tred/; and in A\z. M no occurrences aof in M are free for substitution
by another expression (see example (ii) on Slide 38). The finite det¢@fvariablesof an
expression is defined on Slide 39. The key clause is the last sns-rot a free variable of
Ax. M.

In fact we need the operation simultaneouslgubstituting expressions for a number of
different free variables in an expression. Givesudbstitutions, i.e. a finite partial function
mapping variables taFP expressionsM [o] will denote thel FP expression resulting from
simultaneous substitution of eagche dom (o) by the corresponding expressiofiz). It is
defined by induction on the structure bf (simultaneously for all substitutions in Figure 5
(cf. Stoughton 1988). Then we can tak§M'/x] to be M [o] with o = {z — M'}.

5.1 Substitution and-conversion

Substitution examples

M [M'/x] — substitute M’ for all free occurrences of the
variable x in the expression M .

() (Az.x +y)[4/y]is Ax.z + 4.

(iy (Az.z+ y)[4/x]is Ax.z + y, not A\z. 4 + y, because
Azx. x + y contains no free occurrence of .

(i) Ax.x + y is the same as (is a-convertible with) A\z. z + y;
and (Az.z + y)[z/y]is A\z. z + z, not A\x. = + .

Slide 38

fu(M) — set of free variables of M

def

fo(n)=fv(b)=fv(£)=fv(skip) = 0

fo(1M) ' fo ()

fo(M op M")=fv(M := M")=fv(M ; M")=
—fv(while M do M')=fo(M M) fu(M) U fo(M")

def

fo(if M then M’ else M") = fo(M) U fo(M') U fu(M")

def

fo(z) = {x}

fo(Az. M) aef {z' € (M) | 2’ # z}.

Slide 39

52 5 FUNCTIONS
o o] def {O‘(:L‘) if z € d.om(a)
x otherwise.
e nfo] L. Similarly for b, £, and skip.
o (MM)o] & (M[o])(M'[¢]). Similarly for M op M', M = M', M ; M’
while M do M’, !M, and if M then M’ else M".
e (\z.M)|o] def Ar'.(Mo[z — 2']]), where z’ is the first variable not in
fo(o) U fo(M).
Notes

In the last clause of the definition:

o[z — z'] is the substitution mapping = to =’ and otherwise acting like o.

z' is first with respect to some fixed ordering of the set V of variables that we assume
is given.

fu(o) ef {y | 3z € dom(o).y € fu(o(x))} is the set of all free variables in the

expressions being substituted by o.

Since z' ¢ fv(o)Ufv(M), the only occurrences of 2’ in M o[z — z']] that are ‘captured’
by Az’. (=) correspond to occurrences of z in M that were bound in Az. M.

Figure 5: Definition of substitution

5.1 Substitution and-conversion

a-Conversion relation

is inductively defined by the following axioms and rules:
M. M =, M\’ (M[z'/z]) M=, M

M=,M M=, M M=,M"

M=, M M=, M"
MEa M’ M1 =a M{ M2 =a Mé
Az M =4 \z. M M My = M! M}

plus rules like the last one for each of the other LFP
expression-forming constructs.

Slide 40

LFP terms

We identify LFP expressions up to a-conversion:

An LFP term is by definition an =, -equivalence class of
LFP expressions.

But we will not make a notational distinction between an
expression M and the LFP term it determines.

In using an expression to represent a term, we usually choose one
whose bound variables are all distinct from each other and from any

variables in the context of use.

Slide 41

53

54 5 FUNCTIONS

Note how the last clause in Figure 5 avoids the problem of unwanted ‘capture’ of free
variables in an expression being substituted, illustrated by example (iii) on Slide 38. It does so
by ‘«a-converting’ the bound variable. There is no problem with this from a semantical point
of view, since in general we expect the meaning of a function abstraction to be independent
of the name of the bound variablex# M andAz’. M [z’ /x] should always mean the same
thing. The equivalence relatioa,, of a-conversiorbetween.FP expressions is defined on
Slide 40. In Section 2.1 we noted that the representation of syntax as parse trees rather than as
strings of symbols is the proper level of abstraction when discussing programming language
semantics. In fact when the language involves binding constructs one should take this a
step further and use a representation of syntax that identif@nvertible expressions. Itis
possible to do this in a clever way that still allows expressions to be tree-like data structures
through the use of de Bruijn’s ‘nameless terms’, but at the expense of complicating the
definition of substitution: the interested reader is referred to (Barendregt 1984, Appendix C).
Here we will use brute force and quotient the set of expressions by the equivalence relation
=,. see Slide 41. The convention mentioned on that slide—not making any notational
distinction between an expressidf and theLFP term it determines—is possible because
the operations on syntax that we will employ all respeaionversion. For example, and as
one might expect, it is the case that the operation of substitution respgcts

(M =q M{ & My =, Mj) = M [M, /2] =, M{[M}/z].

Similarly, the set of free variables of an expression is invariant with respegt, to

M=,M = fu(M)=fo(M).

5.2 Call-by-name and call-by-value

We will give the structural operational semanticsLéP in terms of an inductively defined
relation of evaluation whose form is shown on Slide 42. Comparedivithhe main novelty

lies in the rules for evaluating function abstractions and function application. For function
abstractions, we take configurations of the fofhx. M, s) to be terminal. For function
application, there are (at least) two natural strategies, depending upon whether or not an
argument is evaluated before it is passed to the body of a function abstraction. These strategies
are shown on Slide 43. Many pragmatic considerations to do with implementation influence
which one to choose. The different strategies also radically alter the properties of evaluation
and the ease with which one can reason about program properties—we shall see something
of this below.

5.2 Call-by-name and call-by-value

LFP evaluation relation

takes the form:

(M, s) 4(V,5)
where
e M and V are closed terms, i.e. fu(M) = fu(V) = 0.
e s and s’ are states, i.e. finite partial functions from IL to 7.

e Visavalue, V :=n|b| ¢ | skip | A\z. M.

Slide 42

Call-by-name and call-by-value evaluation

(M, s) | (Az. M7, s')
(Mi[Ms/z],s") I (V,s")

(Ucbn)
(My Mz, s) I (V,s")
(My,s) |} (A\z. M1, s")
(Mz,5") § (Va, s")
(Mi[Va/x],s") I (V,s")
(Ucbv)

(M1 M, s) 4 (V. s")

Slide 43

95

56 5 FUNCTIONS

Uoar) (V,s) | (V,s) (V avalue)

(My,s) |} (ny,s") (Ma,s') |} (ng,s") where c is the value

(Uop) p of ny op no (for op an
(My op Ma, s) | (c,s") integer or boolean operation)
) (M, s) | (true, s’) (My,s") | (V. s")
i (if M, then M, else Mz, s) | (V, s
(My, s) || (false, s’y (Ms,s") | (V,s")
(‘U’if2)

(if M then M, else M3, s) |} (V, s")
(My,s) U (¢,s")
, fee dom(s') & s'(¢) =
N YAPTIING if £ € dom(s') & s'(£) =n

(My,s) |} (£,s") (Ma,s") | (n,s")

() .
(M, := My, s) || (skip, s"'[¢ — n])
(My,s) | (skip, ') (Ms,) | (skip, s”)
(‘U’seq) .
(My; My, s) | (skip. s”)
(M, s) | (true,) (Ma, ') | (skip, ")
(while M; do Ms, s") || (skip, s"")
(‘U’Whl) . .
(while M do M, 5) |} (skip, s")
(M, s) || (false, s)
(U’wh2) R .
(while M; do My, s) |} (skip, s)
plus either rule ({,,) or rule ({.;,) on Slide 43.

Figure 6: Axioms and rules for LFP evaluation

5.3 Static semantics 57

For LFP, {},, and |}, are incomparable

Let
def . .
Cy = while true do skip
C; ¥ (A2 skip) Co
Cy & (Az.if 1€ = 0 then skip else Cp) (£ := 0).
Then
C1,5) Uy (skip, s) (any s)
Cla S> ?Uv

{

{

(Co, {f = 1}) 4

(Co, {€— 1}) Uy (skip, {{— 0}).

Slide 44

Definition 5.2.1. Thecall-by-name(respectivelycall-by-valug evaluation relatiorfor LFP
terms is denoted},, (respectively|l,) and is inductively generated by the rulé ()
(respectively {,,.)) on Slide 43 together with the axioms and rules in Figure 6.

cbv

The examples on Slide 44 exploit the fact that evaluatiobFd? terms can cause state
change to show that there is no implication either way between call-by-value convergence
and call-by-name convergence. The following notation is used on the slide:

(M,s) & thereis naV, s) for which

(M, s) | (V,s') holds.

We leave the verification of these examples as simple exercises. (Prove the exanjées of
in Example 3.2.1.)

5.3 Static semantics

As things stand, there are mahf/P terms that do not evaluate to anything becauskypé
mis-matches. For example, although the application of an integer to a function, such as
2 (Az.z), is a legal expression, it is not really a meaningful one. We can weed out such
things by assigning types td-P terms using a relation of the kind shown on Slide 45. The
intended meaning df - M : 7 is:

58 5 FUNCTIONS

“If the variablez has typel'(x) for eachxz € dom(T), then the termM has
typer.”

We capture this intention through an inductive definition of the relation that follows the
structure of the term\/. The rules for function abstraction and application are shown on
Slide 46 and the other axioms and rules in Figure 7. Note that these rules apphynt®

i.e. to expressions up t@-conversion. Thus

(:var)
(:fn)

{e' 57 e—1}ba:T

{e' =7} X2 >

is a valid application of the rules, because’. z’is the same term aaz.z. In using

the rules from the bottom up to deduce a type for a tevfm it is as well to use a
representative expression faf that has all its bound variables distinct from each other
and from the variables in the domain of definition of the type environment. So for example
0 F M. Xz.z : 7 — (7' — 1) holds, but it is probably easier to deduce this using the
a-equivalent expressiohz. A\z’. x’.

Typing relation

takesthe form |I' M : 7| where:

e Tisatype = nt integers
| bool booleans
| loc location
| e¢md commands
| 7 — 7 functions.

e ['is atype environment, i.e. a finite partial function mapping
variables to types.

e M isan LFP term.

Slide 45

5.3 Static semantics 59

(:var) F'Fx:7 ifzxedom(T)&T(z)="1
(:int) F'kn:int (n€Z)
(:bool) TC'Eb:bool (beB)
(:10c) F'H4:loc (Lel)
I'EM;:int T'F M,: int
Ciop) I' = My iop Ms : int
I'EM;:int T'F M,: int
(thop) I' = My bop Ms : bool
I'EM;:bool T'H-My:7 T'EMs:T
(i) I' - if M, then Ms else M; : T
cget) '-M: l?c
I'EIM :nt
I'EM:loc T+ Ms:int
(:set)
' M;:=Ms: cmd
(:skip) I' - skip : cmd
I'EM;:emd T'F My emd
(isea) ' M,;Ms: cmd
I'E M;:bool T'F Ms: emd
(:wh1)

I' F while M; do M, : emd

plus rules (:) and (:app) ON Slide 46.

Figure 7: Axioms and rules for LFP typing

60 5 FUNCTIONS

Typing rules for
function abstraction and application

Clx —7]F M: 7!
(n) itz ¢ dom(T)
rXe.M:7—>1

'EMy:7—=17 TFMy:1
Fl_MlMQZT’

(app)

Inrule (:fn), F[a: — 'r] denotes the type environment mapping x to 7
and otherwise acting like T".

Slide 46

Definition 5.3.1 (Typeable closed terms)Given a closed FP term M (i.e. one with no free
variables), we say/ has typer and write

M:T
if) = M : 7 is derivable from the axioms and rules in Figure 7 (and Slide 46).

Note that anLFP term may have several different types—for example = has type
T — 7 for any 7. This is because we have not built any explicit type information into the
syntax of expressions—an explicitly typed function abstraction would tag its bound variable
with a type: Qz : 7. M). For LFP, there is an algorithm which, giveh and M, decides
whether or not there exists a typesatisfyingl’ = M : 7. This is why this section is entitled
static semantics: type checking is decidable and hence can be carried out at compile-time
rather than at run-time. However, we will not pursue this topityple checkindnere—see
the Part Il course ofypes Rather, we wish to indicate how types can be used to predict
some aspects of the dynamic behaviour of terms. Slide 47 gives two examples of this. Both
properties rely on the following substitution property of the typing relation.

Lemma 532.If T - M : randT[z — 7] - M’ : 7" withz ¢ dom(T), then
M [Mjx): 7.

This can be proved by induction on the structuréf, we omit the details.

5.3 Static semantics 61

Some type-related properties of evaluationin ~ LFP

(i) Subject reduction . 1f M : 7and (M, s) |, (V,s'), then
Vit

(i) Cbn-evaluation at non-command types is side-effect free .
if7 # cmd, M : 7,and (M, s) |, (V, '), thens = §'.

For |}, property (i) holds, but property (ii) fails.

Slide 47

Property (i) on Slide 47 can be proved by Rule Inductionlfgr(and similarly ford}.).
We leave the details as an exercise and concentrate on

Proof of (ii) on Slide47. Let ®(M, s,V, s’) be the property
(M, s) n(V,s') & YT # cmd (M : 7= s=15").

By Rule Induction, it suffices to show thét(M, s, V, s’) is closed under the axioms and
rules inductively defining},,. This is all very straightforward except for the case of the rule
for call-by-name application,|(,;,,,) on Slide 43, which we examine in detail.

So we have to prové@(M; Ms, s,V, s') given

(28) O(My, s, \x. My, s")

(29) O(M{[My/x],s",V,s").

Certainly (J.,,,), (28) and (29) imply tha{M; M, s) |, (V, s”) holds. So we just have to
show that if

(30) @"MlMQIT

holds for somer # ¢md, thens = s”. But (30) must have been deduced using typing rule
(:app) @and hence

(31) DMy 7 >71
(32) O+ Msy: 71

62 5 FUNCTIONS

hold for some typer’. Sincer’ — 7 is not equal tocmd, (28) and (31) imply that = s’
by definition of®. Furthermore, by the Subject Reduction property (i) on Slide 47, (28) and
(31) also imply thatz. M| : 7" — 7. This typing can only have been deduced ky)({from

(33) {z 7'} M| T

Applying Lemma 5.3.2 to (32) and (33) yieldd[M,/z] : 7; and by assumption # cmd.
Hence by (29}’ = s”. Therefores = s’ = s”, as required. O

Remark 5.3.3. Property (ii) on Slide 47 fails focall-by-valueLFP because in the call-by-
value setting, sequential composition cannot be limited just to commands, as the following
example shows. Consider

M, andthen M, % (. My)M, (wherez ¢ fo(M>)).

We have

M, :7 & My : 7" = M; andthen M, : 7’
<M1, S> v <V1./ 8,> & <M2./ 8,> Uy <V2./ 8”> = <M1 andthen M, S> v <V2./ 8”>.

Thus for examplé/ := !/ 4+ 1) andthen 1 is an ‘active’ term of typent:

((£:=Y+1)andthen 1, {f+— 0}) |y (1,{£— 1}).

5.4 Local recursive definitions

In this section we consider the operational semantics of various kinkdalf declaration
concentrating omexically scopectonstructs, i.e. ones whose scopes can be decided purely
from the syntax of the language, at compile time. The designers of Algol 60 (Naur and
Woodger (editors) 1963) defined the concept of locality for program blocks in their language
as follows (quoted from Tennent 1991, page 84).

“Any identifier occurring within a block may through a suitable declaration be
specified to be local to the block in question. This means (a) that that the entity
represented by this identifier inside the block has no existence outside it, and
(b) that any entity represented by this identifier outside the block is completely
inaccessible inside the block.”

The modern view (initiated by Landin 1966) is that for lexically scoped constructs, such
matters can be made mathematically precise via the notionewfd variable substitution

and a-conversionfrom the lambda calculus (see Section 5.1). For example, function
abstraction and application IoFP can be combined to giviecal definitions as shown on
Slide 48.

5.4 Local recursive definitions 63

Local definitionsin LFP

let z = M1 in M2 déf ()\ZB MQ) M1

Derived typing rule:
'EMy:7 Tlz—71]FMy:7
I'Flet x = M;in My : 7'

Derived evaluation rule (call-by-name):
<M2[M1/$], S> Un <Va S,>
(let x = My in My, s) U, (V. s)

Slide 48

Note thatfv(let z = M; in Ms) = fo(My) U {2z’ € fo(My) | ' # x} and that
free occurrences of in M, become bound ibet x = M; in M,. Slide 49 illustrates how
locality is enforced viax-conversion.

Remark 5.4(i). Given the definition oflet x = M; in M, on Slide 48, the typing and
evaluation rules given on the slide aterivablefrom the rules for call-by-nameFP in the
sense that

—ifT' - My : 7andT[xz — 7] - M, : 7' are derivable from Figure 7, then so is
I'klet x = M; il’leZTl;

— if (M3[My/x], s) In (V,s'), then(let x = M; in My, s) ||, (V. s').

Remember that we only defined evaluation ¢twsedLFP terms. So in the evaluation rule
M is a closed term andi/, contains at most free.

(i) For call-by-valueevaluation of a local definition, rulgl(;) on Slide 43 means that we first
compute the value a¥/; (if any) and use that as the local definitionzofn evaluatingMs.
So

— i (My,5) Uy (V1, 8) and(M;[Vy /], s") Uy (V2,5"), then
(let xr = M1 in Mg, S> Uv <V2, S”>.

64 5 FUNCTIONS

Locality via «-conversion

Because we identify LFP expressions up to a-conversion, the
particular name of a bound variable is immaterial:

let x = My in My andlet 2’ = My in Ms[z'/x]
represent the same LFP term.

Moreover, up to «-conversion, a bound variable is always distinct
from any variable in the surrounding context. For example:

(letz=1linz+2)*xx =, (let 2’ =1lin 2’ +2') * z.

Slide 49

Note that the definitionr = M, that occurs inlet x = M; in M, is a ‘direct’
definition— is being declared as a local abbreviation #dy in M. By contrast, aecursive
definition such as

(34) f = Azx. ifz<Othen fzx
elseif x = 0 then 1
else x x f(x — 1)

in which the variablef occurs (freely) in the right-hand side, has an altogether more
complicated intended meaning:is supposed to be some data (a function in this case) that
satisfies the equation (34). What does this really mean? To give a denotational semantics
(cf. Slide 3) requires one to model data as suitable mathematical structures for which ‘fixed
point equations’ such as (34) always have solutions; and to do this in full generality requires
some fascinating mathematics that, alas, is not part of this course. The operational reading of
(34) is theunfolding rule

“During evaluation of an expression in the scope of the definition (34), when-
ever a use of is encountered, use the right-hand side of the equation (thereby
possibly introducing further uses @) and continue evaluating.”

In order to formulate this precisely, let us introduce an extenisidhwith local recursive
definitions, calledLFP*. The expressions ofFP™ are given by the grammar fdrFP
(Slide 37) augmented by tHetrec construct shown on Slide 50. Free occurrences of

5.4 Local recursive definitions 65

in M, and inM, become bound itetrec x = M; in M, and the extension toFP* of the
definition of substitution given in Figure 5 is:

(letrec z = M; in My)[o] & letrec 2’ = Mi[o[z — '] in My[o|z s 2']]

wherez’ is the first variable not iffv (o) U fu(M7) U fu(M3). We continue with the convention
on Slide 41 and refer te,-equivalence classes BEP* terms Of course thew-conversion
relation has to be suitably extended to cope Wéfrec expressions, by adding the axiom

(letrec z = M, in M) =, (letrec 2’ = M|z’ /] in Ms[x'/z])

and the rule

M1 = M{ M2 = Mé
(letrec x = M in M,) =, (letrec x = M/ in M))

LFP™ = LFP + local recursive definitions

Expressions:

M = ||letrecz = M in M |

Free variables:

fv(letrec x = My in M>) def

{z’" € fo(M1) U fo(My) | 2" # x}
Typing:
Flx—7|EM:7 Tlx—71]F My: 7'

I+ letrec x = M; in My : 7/

(‘letrec)

Slide 50

66 5 FUNCTIONS

LFP™ evaluation relation

is given by the evaluation rules for call-by-name LFP plus:

(Ms|(letrec x = My in My)/z],s) |} (V, §')
(letrec x = Mj in M, s) | (V,s')

(Uletrec)

Slide 51

The static semantics &FP ™ is given by the typing axioms and rules fiofP (Figure 7)
together with the rule:{;,ec) on Slide 50. Th& FP evaluation relation is inductively defined
by the axioms and rules for call-by-narb€P augmented by the rulg)(,;,..) on Slide 51;
we will continue to denote it by ,,. Note the similarity with the call-by-name evaluation of

non-recursivdet-expressions (Slide 48). The difference is that whénis substituted for:
in M, itis surrounded by the recursive definitionaaf

5.4 Local recursive definitions 67

Fixpoint terms

fixe. M ' letrecz=Min M

Derived typing rule:
Clx—71]FM:T
I'-fixe. M:71

Derived evaluation rule (call-by-name):
(M[fixxz.M/x],s) In (V,s)
(fixz. M, s) In (V,s)

Slide 52

Slide 52 shows the specialisation of the&rec construct to yieldfixpointterms. The
typing and evaluation properties stated on the slide are direct consequences of the rules
(tetrec) aNd (}1etrec)- We make use of such terms in the following example.

Example 5.4.2.

(35) (letrec f = (Az.if z =0then lelsexx f(xr —1))in f1,s) |, (1,s).
Proof. Define

F oY fxf e M 2 letrec f=\e. M in \z. M

where

M Y if z = 0then 1 else z x f(z —1).

For any closed ternV and valuel” we have:

(Az. M)[F/f] 4 \x. MIF/] (ﬁ”l) | :
F U Ao, M|F/f] e MIF/ SN/ 4V
N U, V Ucbn)

letrec f =X z. M in fN |V (Wetrec)

68 5 FUNCTIONS

where we have suppressed mention of the state part of configurations because it plays no
part in this proof. Takingv = V = 1, we see that to prove (35), it suffices to prove
MI[F/f][1/x] |, 1. ButsinceM[F/f][1/xz] = if 1 = 0 then 1 else 1 x F(1 — 1), for

this it clearly suffices to prove thdt(1 — 1) §, 1. TakingN =1 —1andV = 1in the

proof fragment shown above, we have ti#gtl — 1) |, 1 if M[F/f][1 —1/z] {, 1. But
M[F/f][1—-1/z]=if (1—1)=0thenlelse(l1—-1)*F((1-1)—1)and:

U1 (Yvar) U1 (Vvar)
Wop) —— (Uyar)
1—-100 010 o
(1—1) =01 true RN W)

if(1—1)=0thenlelse(1-1)«F((1-1)—-1){y1 (Yi)-

55 Exercises

Exercise 5.5.1.Consider the followind_.FP term for testing equality of location names in
call-by-valueLFP, where let = = — in —’ is as on Slide 48 andandthen’ is as in
Remark 5.3.3.

eq def Ax1. Axa.let £ = 1z In

z1:= 79+ 1 andthen
if 121 = lz5 then (z; := x andthen true)
else (2 := z andthen false)

Show that
0 F eq: loc — (loc — bool)

and that for all statesand all¢, ¢’ € dom(s)

(eqll',s) |, (b,s) whereb = {:‘:Fsz :I ﬁ ; ﬁ:
Exercise 5.5.2.What is wrong with the following suggestion?
“The rule ((}}etrec) ON Slide 51 can be simplified to
(Ms[(letrec © = My in z)/z], s) | (V,s')
(letrec x = My in My, s) |} (V,s)

because in the body of thketrec-expression,z is defined to beM; so we can use
letrec z = M in z instead ofletrec z = M in M.

[Hint: considerletrec x = 0 in x.]

5.5 Exercises 69
Exercise 5.5.3. Prove (i) on Slide 47 by Rule Induction: show that the property
®(M,s,V,s') defined by

(M, s) Iy (V,s") &VNT. M :7=V 1

is closed under the axioms and rules inductively defirdjng (For closure under rulel(,)
you will need Lemma 5.3.2. If you are really keen, try proving that, by induction on the
structure ofM’.)

Exercise 5.5.4. This exercise shows thaimultaneousecursive definitions
(36)

can be encoded usirfix-expressions.
Let M;, M, beLFP™ terms containing at most variables # z- free. We say that a
pair of closed terms;, X5 is a solution of (36) if fori = 1,2 we have

(M;[X1 /11, Xo/ 2], 8) In (V. §") & (X, 8) In (V. §)

for all valuesV and states, s’. Show how to construct such closed teris, X, using the
fixpoint construct of Slide 52.

70

5 FUNCTIONS

71

6 Interaction

So far in this course we have looked at programming language constructs that are oriented
towards computation of final results from some initial data. In this section we consider some
that involveinteractionbetween a program and its environment. We will look at a simple form

of interactive input/output, and at inter-process communication via synchronised message
passing.

Labelled transition systems defined

A labelled transition system is specified by
e aset Config and a set Act,
e adistinguished element 7 € Act

e aternary relation -C Config X Act x Config.

The elements of C'onfig are often called configurations (or ‘states’) and
the elements of Act called actions. The ternary relation is written infix,
ie.
a
c—c

means ¢, «, and ¢’ are related by —.

Slide 53

To specify the operational semantics of such constructs we have to be concerned with
what happens along the way to termination as well as with final results; indeed, proper
termination may not even enter into the semantic description of some constructs. So it is no
surprise that transition relations between intermediate configurations (rather than evaluation
relations between configurations and terminal configurations) will figure prominently. In
order to describe the interactions that can happen at each transition step, we extend the notion
of transition system (cf. Slide 4) by labelling the transitions waithionsdescribing the nature
of the interaction. The abstract notion labelled transition systens given on Slide 53.

What sets of configurations and actions to take is dictated by the particular programming
language feature(s) being described. However, we will always include a distinguished action,
T, to label transition steps in which no external interaction takes glabeus the ordinary

The insistence on the presence of-action is slightly non-standard: in the literature a ‘labelled
transition system’ is often taken to mean just a set of configurations, a set of actions, and a relation on
(configuration, action, configuration)-triples

72 6 INTERACTION

transition systems of Slide 4 can be regarded as instances of labelled transition systems by
taking Act = {7} and identifying transitions; — ¢’, with 7-labelled transitions; = ¢’.

6.1 Input/output

As a first example, we consider the languagé®, obtained by adding tbC (cf. Section 3.1)
facilities for reading integers from a single input stream and writing them to a single output
stream. Its syntax is shown on Slide 54, where as uéuaihges over some fixed setof
locations ranges over the integer&, andb over the boolean®. We specify the operational
semantics of C'° as a labelled transition system, where

e configurations are pair&P, s) consisting of anLC'® phraseP and a state; as before,
states are finite partial functions froimto 7Z;

e actions are generated by the grammar on Slide 54;

¢ labelled transitions are inductively generated by the axioms and rules in Figure 8 and
on Slide 55.

LC® — LC + input/output

Phrases: P :=C | E | B
Commands:
C == skip|l:=FE|C;C||put(F)
| if B then C else C' | while B do C

Integer expressions: F :=n | ! | E iop E ||get

Boolean expressions: B ::=b | E bop E

Actions: a ::= 7 | get(n) | put(n)

Slide 54

6.1 Input/output 73

Labelled transitions for get and put

et(n)

(st) (get,) = (n,s)

(E,s) & (E',s")

(&tl)) -
(put(£), s) % (put(E'), s
(w3) (put(n),s) 2 (skip, s

Slide 55

Note how the axioms for-transitions inLC' correspond to the basic steps of compu-
tation inLC, but that the rules concerned with evaluating a subphrase of a phrase must deal
with any type of action. As fot.C, only transitions between commands can affect the state,
but now transitions between any type of phrase can have input/output effects. An example
sequence of labelled transitions is shown on Slide 56. We leave proving the validity of each
transition as an exercise.

Remark 6.1.1. The simple notion ofleterminacywe used for transition systems (cf. Defi-
nition 1.1.1(iv)) has to be elaborated a bit for labelled transition systems. Clearly transitions
from a givenLC'™ configuration are not uniquely determined: for exampggst, s) can do
aget(n)-action for anyn. However,LC'® is deterministic in the sense that for each action

one has

(P,s) 5 (P',s') & (P,s) 5 (P",s"Yy = P =P'&s=5".

This can be proved using Rule Induction, along the same lines as the proof of determinacy
for LC given in Section 3.1.

74 6 INTERACTION

(10¢) 1,s) = (n,s) ifLcdom(s) & s(t)=n
loc,
<E178> i> <Ei:3,>
(lop1))
(E1 op Ea,s) = (By op Es, 8')
<E27S> i> <Eé, 3,>
(op2)
(n1 op B, 5) = (n1 op B, ')
(oLﬁ)) (ny op na,s) = (c,s) ifc=mnyiopny
(it (E,s) 2 (B, s
set
= (:=E,s) % (L:=F's
{ ,8) = :
((set2) l:=n,s) > (skip, s/l —n
sorg
<017S> i> <Ci/ 8,>
(seql) 5
<Cl ; CQ,S> — <Ci ; Cg, S’>
(seq2) <Skip ; 07 8> L> <C7 S>
() (B,s) % (B', ")
(if B then C; else Cy,s) = (if B’ then C; else Cy, s)
(ifr2) if true then C; else Cs, s) = (C4, s
if2
(if3) (if false then C; else Cy, 5) = (Cs, 5)
(Lwhl) (while B do C, s) = (if B then (C ; while B do C) else skip, s)

plus (g_et>), (put1), and (put2) on Slide 55.

Figure 8: Axioms and rules for LC*® labelled transitions

6.2 Bisimilarity 75

C ' while true do €' where C' ¥ ¢:=get ; put(get — !¢)

(C,s) 5 - B (C"; O, s)

£ (0= 2; put(get — 1)) ; C, s)

T

5o 5 (put(get — 14) ; C, s[l — 2])

O but(3 = 1) ; C, s[t — 2))

5o D (put(1) ; C, s[¢ — 2])

P2, skip ; C, s[l — 2])
5 (C, 5[t — 2))

Slide 56

6.2 Bisimilarity

The notion ofsemantic equivalenceonsidered in Section 4 is phrased in terms of observing
final results of evaluating programs. For languages with interactive features this is not so
appropriate, since interactive programs may never produce a final result. In this case it is
more appropriate to formulate a notion of program equivalence based upon the (sequences
of) actions programs can perform as they evolve. We present one such notion in this section.

Recall from Slide 53 the notion of labelled transition system that we used when specifying
the operational semantics of languages involving interaction. We can associate with each
labelled transition system the binary relationkagimilarity on its set of configurations, as

defined on Slide 57. The notatic® used there is defined as follows:

* *

T* .
& def — ifa=r7
—

T « T .

— = — ifa#T

where ™ denotes the reflexive-transitive closure of therelation (cf. Definition 1.1.1(i)).

76

6

INTERACTION

Bisimulations and bisimilarity

Let (Config, Act, T, —) be a labelled transition system
(cf. Slide 53). A bisimulation is a binary relation R on the set
Config such that whenever ¢; R ¢, then forall a € Act

o o .
e whenever ¢c; — ¢}, then ca — ¢4 holds for some ¢, with
¢} R c; and

o o .
e whenever co — ¢}, then ¢; — ¢/ holds for some ¢ with
/ /
c; R cs.

By definition, two configurations are bisimilar, c1 ~ c¢2, if and

only if ¢c; R ¢o holds for some bisimulation relation R.

Slide 57

SoR is a bisimulation orC'onfig if whenevere; R co, then the following four conditions

hold:

If c; =5 ¢}, thency ~— ¢, holds for some, with ¢} R c}.

If co = ¢, thenc; — ¢} holds for some?} with ¢} R c).

For any actiony # 7, if ¢; — ¢, thenc, =" ¢, holds for some, with ¢} R c}.

For any actiony # 7, if c; = ¢}, thenc; ="~ ¢/ holds for some; with ¢} R c}.

Here is an example of a bisimilarity for the langudgg® of Section 6.1.

6.2 Bisimilarity 77

Example

Consider the following LC!® commands:
C; ¥ while true do (£ :=get ; put(!{ — get))

Co ©f while true do put(get — get)
C; % while true do (£ := get ; put(get — !/)).

Then for any state s it is the case that

(C1,s) = (Cq,s) # (Cs,s).

Slide 58

Example 6.2.1. Consider the threECiO commandg’';, Cy, C3 on Slide 58. The essentially
deterministic nature of th&C' labelled transition system (cf. Remark 6.1.1) makes it
quite simple to establish the bisimilarity and non-bisimilarity given on the slide. For any
states, the only transitions fromC4, s) and (Cs, s) deducible using the rules fdrC*®
labelled transitions in Figure 8 are those given in Figure 9. Consequently it is not hard
(just tedious) to check that the relation in Figure 10 is a bisimulation establishing the fact
that(C1, s) ~ (Cs, s).

To show that{Cs, s) % (Cs, s) we suppose the contrary and derive a contradiction. So
suppos€Cy, s) and(Cs, s) are related by some bisimulatigd. Since

T get(2)T" get(3) 1"

(Cs, s) > (put(1) ; Cs, s/l — 2])
(cf. Slide 56) andC, s) R (C3, s), there must be somg”, s') with

Tget(2)T " get(3)T"

(37) (Cy, 5) » (C', 5")
and
(38) (C', 8"y R (put(1) ; C3, s[f — 2]).

In view of Figure 9, the only way that (37) can hold ig@’, s') is either(put(2 — 3) ; Cs, s)
or (put(—1) ; Cs, s). In either case we have

T put(—1
(—1)

(')

78

6

INTERACTION

Forany n,n’ € Z

and

(C1,s) = (if true then (£ := get ; put(!/ — get)) ; C; else skip, s)

<C2= 3)

\J/ﬁ

((£:=get ; put(!4 —get)) ; C1,s)

get(n), ((:=n;put(ll —get));Ci,s)

((skip ; put (!4 — get)) : C1, s[{ — n])

(put(1£ — get) ; Cy. s[¢ — n])

(put(n — get) ; Cy, s[¢ — n])
(pu

put(n —n'); Cy, s[{ — n))

ARSI

+

(n")

(5]

f

\J/ﬁ

(put(n’); C1, s[¢ — n]) wheren” =n—n'

U) skip s Ch, sE > 1))

(C1, s[l — n])

ko]
=1
o+

—~

\Lﬁ

T (if true then put(get — get) ; Cs else skip, s)

(put(get — get) ; Ca, 5)
get(n)

\Lﬁ

== (put(n — get) ; Cs, s)

m (put(n —n'); Cy,s)

L (put(n”); Cy,s) where n” =n —n'

PU), skip ; s, 8)

L) <02./8>

Figure 9: Transitions from (Cy, s) and (Cs, s)

6.2 Bisimilarity 79

R = {({C4, 81),(C3, s2)) | s1,82 € States}

U {((if true then (¢ := get ; put(!4 — get)) ; Cy else skip, s1)
(if true then put(get — get) ; Cs else skip, s3)) | s1, 52 € States}

3

U{({(£:=get ; put(!£ — get)) ; C1, s1),
(put(get — get) ; Co, s2)) | 1,82 € States}

U{({(£:=n;put(!l —get)); Cy, s1),
(put(n — get) ; Ca, $2)) | 51,82 € States & n € Z}

U {({(skip ; put(!/ — get)) ; C1, s1[£ — n]),
(put(n — get) ; Ca, $2)) | 51,52 € States & n € Z}

U {((put(¥ — get) ; C1, s1[¢ — n]),
(put(n — get) ; Ca, $2)) | 51,82 € States & n € Z}

U{((put(n — get) ; C1, s1[{ — n]),
(put(n — get) ; Ca, $2)) | 51,82 € States & n € Z}

U{({(put(n —n'); Cy, s1[f — n]),
(put(n —n') ; Ca, 52)) | 51,82 € States & n,n' € Z}

U{((put(n”): C1, s1[¢ — n]),
(put(n”); Ca, s2)) | 51,59 € States & n,n" € Z}

U {((skip; C1, s1[£ — n]), (skip ; Co, s2)) | 51, $2 € States & n € Z}.

3

Figure 10: A bisimulation relating (C1, s) and (Cs, s)

80 6 INTERACTION

So in view of (38) we must also have

T*put(—-1)r"
_—

(put(1) ; C3, s[t — 2])
which clearly is impossible. Therefore no such bisimulatibean exist. O

Remark 6.2.2. With regard to the basic properties of equality listed on Slide 29, the bisim-
ilarity relation associated with a labelled transition system is always reflexive, symmetric
and transitive: see Exercise 6.4.6. It does not make sense to ask whkatharcongruence
unless the configurations of the labelled transition system have some syntactic structure—for
example, are the configurations of some programming languagel Farwe have so far
defined bisimilarity for configurations rather than for phrases. However, if we d&finel’”’

to mean tha{P, s) ~ (P, s) holds for all states, then it is in fact the case that the& ™
bisimilarity relation is a congruence.

6.3 Communicating processes

In LCI there is interaction between a program and its environment. In this section we
consider the more complicated situation in which there is interaction between several
concurrently executing processes within a system. Two common mechanisms for achieving
such interaction are via shared state of various kinds and via various kinds of message-
passing. Here we will look at a simple Language of Communicating Procéssesbased

on the CCS calculus of Milner (1989).

LCP syntax

Process expressions:

P:=c(x).P|¢E).P|0|P+P|P|P|vc.P|A

Integer expressions: F =z | n | E iop F
Actions: « ::= 7 | ¢(n) | ¢(n)
where

e 1 €V, afixed, infinite set of integer variables;
e ¢ € CV, afixed, infinite set of channel variables;

e n € 7,the set of integers;

. def
iop € Top = {—1—, — k.. } a fixed, finite set of integer-valued binary
operations on integers;

A € PC, afixed, infinite set of process constants.

Slide 59

6.3 Communicating processes 81

The syntax ofLCP is given on Slide 59.LCP process expressions represent multi-
threaded computations which evolve by performing sequences of actions. Actions are of
three types:

¢(n): outputnumbern on channel named

c¢(n): inputnumbern on channel named

7. internal (externally unobservable)action.

The intended meaning of the various forms of process expression are as follows.

Input prefix: ¢(z). P is a process ready to receive an integer valuwa channet and then
behave likeP. This is a binding construct: free occurrencescah P are bound in
c(x).P.

Output prefix: ¢(F) . P is a process ready to output the value of the integer expregsion
on channet and then behave like.

Inactive process: 0 can perform no actions.

Choice: P + P’ is a process which can do any of the actions of eifhar P’.

Parallel composition: P|P’ can perform the actions d? and P’ independently, and can
perform synchronised communications between them on a common channel.

Restricted process: v c¢. P can perform the actions aP except for those involving in-
put/output on channel. This is a binding construct: free occurrences:of P are
bound invc. P.

Process constants:.we assume that all the process constahtgcurring in process expres-
sions that we use have been given a (recursiedhition as on Slide 60.

82 6 INTERACTION

Recursive definitions of LCP process constants
take the form
(def
A = P
def
Ay = Py
\ .
def
\ A’I’l é P’I’l
where A1, As, ..., A, € PC are mutually distinct and
Py, P, ..., P, are process expressions with no free integer
variables and containing no process constants other than
Ar, Asg, ..o A
Slide 60

There are two kinds of variable ihCP—standing for integers and communication
channels—which may occur both free and bound in process expressions, as indicated above.
Correspondingly, there are two kinds of substitution:

e P[FE/x]: substitute the integer expressiéifor all free occurrences aof in P
e P[c'/c]: substitute the channel variahlefor all free occurrences afin P

These substitutions can be defined along the lines of Figure 5 (i.e. in a way that avoids capture

of free variables by the binding operations). We will identify process expressions ap to
conversion of bound integer, channel, and function variables.

Given a recursive definition of someCP process constants as on Slide 60, we define
the operational semantics bEP process expressions involving those constants by means of
a labelled transition system. Its configurations arelti® processeswhich by definition
are the process expressions with no free integer variables (but possibly with free channel
variables) and with process constants drawn from the defined ones. Its set of actions is

generated by the grammar on Slide 59 and its set of labelled transitions is inductively defined
by the axioms and rules given on Slides 61-63.

6.3 Communicating processes

Prefixes and choice

(in) o(z). P 2 Pln/q]
(out) &E).P XY P wEn
PP ,
(+) (i=1,2)
P+P 5P

where | is inductively defined by the following axiom and rules:

Eiyny Eyln
nln (ne€z) v Faln ifn = nq iop ngy
FE;iop Es I n

Slide 61

Parallel composition

Independent action:

PSP
(par) and symmetrically.
Pi|Py = PPy

Synchronised communication:

P prop, &7 py

(com) and symmetrically.
Pi|P, I P||P}

Slide 62

83

84 6 INTERACTION

Restriction and constants

) oy = . _
(1) - if @ # c(n), &(n) (any n)
ve.P > ve. P
- /
(ﬂ) ﬂ ifAdéfP
A% P
Slide 63

Transitions labelle@(n) (respectivelye(n)) occur when a process inputs (respectively
outputs) the integer on channet; transitions labelled record the synchronised commu-
nication of integers on channelsjthoutrecording which channel or which integer (cf. rule
(ﬂ)). Note that the rule) for the restriction operator can prevent explicit input- or
output-actions (typically those arising from a parallel composition via r@) D), but can

never prevent a-transition.

Remark 6.3.1. Note that unlikeLC®, the labelled transition system fdrCP is non-
deterministic in the sense that there may be several different transitions from a given process
with a given action. The choice operater, clearly introduces such non-determinism, but it

is present also because of the rules for parallel composition. For example

0[0|¢c(0).0<"—¢(0).0]c(z).0]¢c(0).0—"—=¢(0).0]0]0.

Example 6.3.2.Here is an example illustrating the combined use of parallel composition and
restriction for ‘plugging’ processes together—in this case a number of single-capacity buffers
to get a finite-capacity buffer. Some simé€P processes modelling buffers of various finite
capacities are shown on Slide 64. Usirgl, (ﬂ) and (cg), it is not hard to deduce that

the possible transitions @¥; , are

6.3 Communicating processes

Example LCP processes

channel o:

def . _
B, = i(x).0(x) . B,

Buffer of capacity one, inputting on channel 7 and outputting on

Buffers of capacity two, three, . ..:

def
B;,o = ve. (Bi.c|Beo)
BZO def ve.vc . (Bz',c|Bc,c/|Bc’,o)

Slide 64

Slide 65

85

86 6 INTERACTION

It follows from the structural nature of the rules on Slides 61-63 that the only possible
transitions from the process; , defined on Slide 64 are all of the form

B, ™ ve. ((e(n). Bio)|Bey) (anyn € Z).
Similarly, the only possible transitions from the process ((c(n) . B; c)|Be,o) IS

ve.((e{n). B;c)|Beo) Sve. (Bi.cl(0(n). Be,))

which is deduced via a proof ending

Bie Beo ™0

é(n)

E(n) .BZ"C —
(¢(n) . Bi¢)|Be.o — Bicl(0(n) . Beo)
ve.((€(n). B;e)|Beo) Sve. (Bi.c|(6(n).B.,))

The process c. (B, .|(o6(n) . B.,)) is capable of two types of action, both deduced via
proofs whose penultimate rule is an instanceﬁ():

ve. (Biol(0(n). Boo)) X% ve. (B;oBoy)

ve. (Biel(6(n) . Beo)) U ve. ((6n') . Bi)|(6(n) . Beo)).

Here is a diagram showing all the processes that can be reached from the process
ve. (B;|Be,o) which definesB;’O:

ve. (B7,('|(< ('0 L’ vece. 7 r’) ('0 L vece. i,c)‘Bc,())
\ i(n)
T . zc‘Bco T
% x
ve.((E(n'). Bic)|Beo) %VC B;)| %VC (Bi.cl(0(n) . Be,o)).

In this diagramn andn’ are arbitrary integers (possibly equal). Ignoring internal actions
(7), note thatv c. (B; .| B.,,) can input at most two integers before it has to output one of
them; and integers are output in the same order that they are input. In this sense it models a
capacity-two buffer.

6.4 Exercises

Exercise 6.4.1.Prove the validity of all the labelled transitions on Slide 56.

6.4 Exercises 87

Exercise 6.4.2.Prove the determinacy property bf™° labelled transitions mentioned in
Remark 6.1.1.

Exercise 6.4.3.Prove the validity of all the labelled transitions mentioned in Example 6.3.2.

Exercise 6.4.4.Consider the.CP process recursively defined by

def

Buff = i(x). (o). Buff + i(x').0(x).o(z"). Buff)

Calculate all the labelled transitions for processes that can be reachedBfifm Hence
show thatBuff is not bisimilar to the capacity-two buffeBg,o given on Slide 64. [Hint:
Buff can input two numbers and output the first to reach a state in whiohstoutput the
second before inputting a third number. This is not truépf. Hence show there can be no
bisimulation relation containing the paiBuff, B; ,).]

Exercise 6.4.5.Consider generalisingCP process constantd by allowing them to carry

integer argumentsd(F, ..., E,). So recursive definitions (Slide 60) now take the form
ef
Al(xl,l...,acl,kl) d: P1
An(xn,l---:xn,kn) déf Pn

where now each right-hand side is a process which can involve free occurrences of the integer
variables mentioned in the argument of the left-hand side. R%)(becomes

Plny/zy, ... ng/ax] = P’

if A(z1,...,25) % PandE; | n; (fori=1,...,k).

3

A(Ey,....Ey) S P

For this extension of CP, consider the definition

Bo ¥ i(z).Bi(z)
Bi(z) Y 5(z).Bo+i(a). Bo(z, ")
Ba(z,2)) ¥ o(z). Bi(2')

Show thatB, is bisimilar to the procesB; , given on Slide 64.

Exercise 6.4.6.Suppose given a labelled transition system as on Slide 53 and consider the
notions of bisimulation and bisimilarity for it, as defined on Slide 57.

(i) Prove that the identity relation

71 {(c,¢) | ¢ € Config}

is a bisimulation .

88 6 INTERACTION

(i) Show thatifR andR’ are bisimulations, then so is their composition

RoR % {(c1,¢3) | Zea (1 R ez & ea R ¢3)}.

(i) Show that if R is a bisimulation then so is its reciprocal

R Y {(ea,c1) | 1 R s}

(iv) Deduce from (i)—(iii) that~ is an equivalence relation.

References

Barendregt, H. P. (1984The Lambda Calculus: Its Syntax and Semartiesised ed.).
North-Holland.

Gunter, C. A. (1992)Semantics of Programming Languages: Structures and Techniques
Foundations of Computing. MIT Press.

Hennessy, M. (1990)The Semantics of Programming Languages. An Elementary Intro-
duction using Structural Operational Semantidshn Wiley & Sons Ltd.

Kahn, G. (1987). Natural semantics. Rapport de Recherche 601, INRIA, Sophia-Antipolis,
France.

Landin, P. (1966). The next 700 programming languagésmmunications of the
ACM 93), 157-166.

Milner, R. (1989).Communication and Concurrendyrentice Hall.
Milner, R., M. Tofte, and R. Harper (1990)he Definition of Standard MIMIT Press.

Naur, P. and M. Woodger (editors) (1963). Revised report on the algorithmic language
Algol 60. Communications of the ACM @D, 1-17.

Plotkin, G. D. (1981). A structural approach to operational semantics. Technical Report
DAIMI FN-19, Aarhus University.

Stoughton, A. (1988). Substitution revisitétheoretical Computer Science, 58 7-325.

Tennent, R. D. (1991F5emantics of Programming LanguagPsentice Hall International
(UK) Ltd.

Winskel, G. (1993)The Formal Semantics of Programming Languadesundations of
Computing. Cambridge, Massachusetts: The MIT Press.

89

90

REFERENCES

Lectures Appraisal Form

If lecturing standards are to be maintained where they are high, and improved where they
are not, it is important for the lecturers to receive feedback about their lectures.
Consequently, we would be grateful if you would complete this questionnaire, and either
return it to the lecturer in question, or to the Student Administration, Computer Laboratory,
William Gates Building. Thank you.

1.
2.

Name of Lecturerbr Andrew M Pitts

Title of CourseCST Part | B Semantics of Programm ng
Languages

How many lectures have you attended in this seriessofar?
Do you intend to go to the rest of them? Yes/No/Series finished

What do you expect to gain from these lectures? (Underline as appropriate)
Detailed coverage of selected topicor Advanced material

Broad coverage of an area or Elementary material
Other (please specify)
Did you find the content: (place a vertical mark across the line)
Too basic = -----m-meeem e Too complex
Too general ------mmmmmm oo Too specific
Well organised ----------=-===-mm oo Poorly organised
Easy to follow ---------mmmmmommo oo Hard to follow
Did you find the lecturer’s delivery: (place a vertical mark across the line)
TOO SIOW =-m-mem e e Too fast
Too general --------mmmmmmmmm e Too specific
TOO qUIEt —-m-mmm oo Too loud
Halting =~ ------mmmmmmmm e Smooth
MONOLONOUS -=-=-=-==m=mmmmm e e oo oo oo Lively

Other comments on the delivery:

Was a satisfactory reading list provided? Yes/No
How might it be improved.

Apart from the recommendations suggested by your answers above, how else might
these lectures be improved? Do any specific lectures in this series require attention?
(Continue overleaf if necessary)

