Logic Programming:
Terms, unification and proof search

Alan Smaill

Sep 24 2015
Today

- Compound terms
- Equality and unification
- How Prolog searches for answers
Terms

So far we have seen ...

- **Atoms**: homer marge ’Mr. Burns’
- **Variables**: X Y Z MR_BURNS

We also have ...

- **Numbers**: 1 2 3 42 -0.12435
- **Complex terms**
- **Additional **constants** and **infix operators**
A complex term is of the form

\[f(t_1, \ldots, t_n) \]

where \(f \) is an atom and \(t_1, \ldots, t_n \) are (maybe complex) terms.
Complex terms

- A complex term is of the form
 \[f(t_1, \ldots, t_n) \]
- where \(f \) is an atom and \(t_1, \ldots, t_n \) are (maybe complex) terms

Examples:

\[
\begin{align*}
 f(1,2) & \quad \text{node}(\text{leaf},\text{leaf}) & \quad \text{cons}(42,\text{cons}(43,\text{nil})) \\
 \text{household}(\text{homer, marge, bart, lisa, maggie}) &
\end{align*}
\]
Lists are built-in (and very useful) data structures.

Syntax:

\[[1,2,3,4]\]
\[[a,[1,2,3],42,’forty-two’]\]
\[[a,b,c|Xs]\]

Lots more on this next week …
Infix operators

Prolog has built-in **constants** and **infix operators**.

Examples:

- Equality: \(t = u \) (or \(= (t, u) \))
- Pairing: \((t, u) \) (or \(, (t, u) \))
- Empty list: []
- **cons**: list given by first element and rest: \([X|Y]\) (or \.\((X, Y) \))

You can also define your own infix operators!
The equation $t = u$ is a basic goal
with a special meaning

What happens if we ask:

?- $X = c$.
?- $f(X, g(Y, Z)) = f(c, g(X, Y))$.
?- $f(X, g(Y, f(X))) = f(c, g(X, Y))$.

And how does it do that?
?- X = c.
X=c
yes

?- f(X,g(Y,Z)) = f(c,g(X,Y)).
X=c
Y=c
Z=c
yes

?- f(X,g(Y,f(X))) = f(c,g(X,Y)).
no
A substitution is a mapping from variables to terms
\[X_1 = t_1, \ldots, X_n = t_n \]

Given two terms \(t \) and \(u \)
- with free variables \(X_1, \ldots, X_n \),
- a unifier is a substitution that makes \(t \) and \(u \) identical when applied to \(t \) and \(u \).
Example 1

\[f(X, g(Y, Z)) = f(c, g(X, Y)) \]

- \(X = c \)
- \(Y = X \)
- \(Z = Y \)
Example I: apply the substitution

\[f(X, g(Y, Z)) = f(c, g(X, Y)) \]

\[
\begin{array}{c}
\text{X} = c \\
\text{Y} = c \\
\text{Z} = c \\
\end{array}
\]
Example II

\[f(X, g(Y, f(X))) = f(c, g(X, Y)) \]

\(X = c \)
\(Y = X \)
Example II: apply partial substitution

\[f(X,g(Y,f(X))) = f(c,g(X,Y)) \]

\[\begin{align*}
X &= c \\
Y &= c \\
Y &= f(X) \\
f(X) &= c ????
\end{align*} \]
Robinson’s algorithm

Consider a general unification problem

\[t_1 = u_1, \quad t_2 = u_2, \quad \ldots, \quad t_n = u_n \]
Robinson’s algorithm

Consider a general unification problem

\[t_1 = u_1, \quad t_2 = u_2, \quad \ldots, \quad t_n = u_n \]

Reduce the problem by decomposing each equation into one or more “smaller” equations

Succeed if we reduce to a “solved form”, otherwise fail.
Robinson’s algorithm ctd

- Two function applications unify if the head symbols are equal, and the corresponding arguments unify:

\[
f(t_1, \ldots, t_n) = f(u_1, \ldots, u_n), \quad P \implies \\
t_1 = u_1, \ldots, t_n = u_n, \quad P
\]
Robinson’s algorithm ctd

- Two function applications unify if the head symbols are equal, and the corresponding arguments unify:

\[f(t_1, \ldots, t_n) = f(u_1, \ldots, u_n), \quad P \Rightarrow \]

\[t_1 = u_1, \ldots, t_n = u_n, \quad P \]

- Must have same name, and equal number of arguments:

\[f(\ldots) = c, \quad P \Rightarrow \text{fail} \]
\[f(\ldots) = g(\ldots), \quad P \Rightarrow \text{fail} \]
Otherwise, a variable X unifies with a term t, provided X does not occur in t:

- proceed by substituting t for X in P:

$$X = t, \quad P \quad \Rightarrow \quad P[t/X]$$

occurs check: provided X does not occur in t
What happens if we try to unify X with something that contains X?

?- $X = f(X)$.
What happens if we try to unify \(X \) with something that contains \(X \)?

\[- X = f(X). \]

Logically this should fail

there is no (finite) unifier!

Most Prolog implementations skip this check for efficiency reasons

- can use `unify_with_occurs_check/2`
Execution model

The query is run by trying to find a solution to the goal using the clauses:

- Unification is used to match goals and clauses
- There may be zero, one, or many solutions
- Execution may backtrack

The formal model is called SLD resolution, which you’ll see in the theory lectures
Depth-first search

Basic Idea:

To solve atomic goal A:

- **If** B is a fact in the program, and there is a substitution θ such that $\theta(A) = \theta(B)$, then return answer θ;
- **else**, if $B :- G_1, \ldots, G_n$ is a clause in the program, and θ unifies A with B, then solve $\theta(G_1), \ldots, \theta(G_n)$
- **else** give up on this goal:
 - **backtrack** to last choice point
Depth-first search

Basic Idea:

To solve atomic goal A:

- **If** B is a fact in the program, and there is a substitution θ such that $\theta(A) = \theta(B)$, then return answer θ;

- **else**, if $B :- G_1, \ldots, G_n$ is a clause in the program, and θ unifies A with B, then solve $\theta(G_1), \ldots, \theta(G_n)$

- **else** give up on this goal:
 - **backtrack** to last choice point

- Clauses are tried in **declaration order**
- Compound goals are tried in **left-right order**
Depth-first search

Prolog tries clauses in order of appearance in the program. We look at a couple of search trees for query execution. Assume: `foo(a). foo(b). foo(c).` then:

```
?- foo(X).
```

```
foo(X)
```

```
X=a  X=b  X=c
```

```
  O
```

```
  O
```

```
  O
```
Depth-first search

Prolog tries clauses in order of appearance in the program. We look at a couple of search trees for query execution. Assume: foo(a). foo(b). foo(c). then:

?- foo(X).
 X=a

 foo(X)
 X=a

X=b
X=c
Depth-first search

Prolog tries clauses in order of appearance in the program. We look at a couple of search trees for query execution.
Assume: `foo(a). foo(b). foo(c).`
then:

?- `foo(X).`
`X=a ;
X=b`
Depth-first search

Prolog tries clauses in order of appearance in the program. We look at a couple of search trees for query execution. Assume: `foo(a). foo(b). foo(c).` then:

```
?- foo(X).
X=a ;
X=b ;
X=c
```

![Search tree diagram](image-url)
Depth-first search

Prolog tries clauses in order of appearance in the program. We look at a couple of search trees for query execution. Assume: foo(a). foo(b). foo(c).
then:

?- foo(X).
X=a ;
X=b ;
X=c ;
no
Depth first search ctd

Prolog *backtracks* to the last choice point if a sub-goal fails.
Assume: \(\text{bar(b). bar(c). baz(c).} \) then:

\[
?\text{- bar(X), baz(X).}
\]

Assume:
- \(\text{bar(b). bar(c). baz(c).} \)

\[
\begin{align*}
X = b & \quad \text{baz(b)} \\
X = c & \quad \text{baz(c)}
\end{align*}
\]
Prolog *backtracks* to the last choice point if a sub-goal fails.
Assume: \(\text{bar}(b) \). \(\text{bar}(c) \). \(\text{baz}(c) \). then:

\[
?- \text{bar}(X), \text{baz}(X).
\]
Prolog **backtracks** to the last choice point if a sub-goal fails. Assume: `bar(b). bar(c). baz(c).` then:

?- `bar(X),baz(X).`

```
bar(X),baz(X)
```

```
X=b
```

```
X=c
```

```
baz(b)
```

```
baz(c)
```
Prolog *backtracks* to the last choice point if a sub-goal fails. Assume: \(\text{bar}(b). \ \text{bar}(c). \ \text{baz}(c) \). then:

\[
?- \text{bar}(X), \text{baz}(X).
\]

```
bar(X), baz(X)
```

```
X=b
```

```
X=c
```

```
baz(b)
```

```
baz(c)
```

Depth first search ctd
Prolog backtracks to the last choice point if a sub-goal fails. Assume: \texttt{bar(b). bar(c). baz(c). then:} \\

\texttt{?- bar(X),baz(X).}
Prolog *backtracks* to the last choice point if a sub-goal fails.
Assume: bar(b). bar(c). baz(c). then:

?- bar(X),baz(X).
Prolog *backtracks* to the last choice point if a sub-goal fails. Assume: `bar(b). bar(c). baz(c).` then:

?- `bar(X),baz(X).`
Depth first search ctd

Prolog backtracks to the last choice point if a sub-goal fails.
Assume: \text{bar(b). bar(c). baz(c).} then:

\[
\text{?- bar(X), baz(X).}
\]
\[
X = c
\]
Prolog *backtracks* to the last choice point if a sub-goal fails. Assume: `bar(b). bar(c). baz(c).` then:

?- `bar(X),baz(X).`
 `X = c ;`
 `no`
Common Prolog programming idiom:

\[
\text{find}(X) :- \text{generate}(X), \text{test}(X).
\]

where:

- \text{generate}(X) produces candidates on backtracking
- \text{test}(X) succeeds or fails on candidates
“Generate and test”

- Common Prolog programming idiom:

 \[
 \text{find}(X) :- \text{generate}(X), \text{test}(X).
 \]

 where:

 - \text{generate}(X) produces candidates on backtracking
 - \text{test}(X) succeeds or fails on candidates

- Use this to constrain (maybe infinite) search spaces;
- Can use different generators to get different search strategies besides depth-first.
Coming Attractions

- Recursion
- Lists
- Trees, data structures

For further reading, see LPN ch. 2.