
Logic Programming

Tutorial 6: Definite clause grammars

Week 8 (Nov 3–7)

1. DCG translation Translate the following DCG grammar rules into ordinary
definite clauses using difference lists:

(a) s --> t, u(a), v.

(b) t --> [a], u(c), [b].

(c) u(X) --> []; ([X], [X]).

(d) v --> [a]; ([a],v).

Then, try to optimize the resulting clauses to perform as much pattern-
matching as possible in the head of the clause, rather than via explicit unifi-
cation subgoals.

2. DCGs with parameters Recall that the Kleene star expression a∗ denotes
the set of all strings of the form an, where n ≥ 0. In Prolog, we can use lists
to model sequences, interpreting such a regular language as:

{[], [a], [a, a], [a, a, a], . . .}

(a) Write a DCG (using one or two rules) that defines a nonterminal astar
that accepts the regular langauge a∗. (Be careful to avoid left-recursion).

(b) Write a DCG that defines a parameterized nonterminal star(X) such
that, for any atom a, star(a) accepts the regular language a∗.

3. Parsing expressions Consider the following simple expression language:

• A number n = 1, 2, 3, . . . is an expression

• If e1 and e2 are expressions then so is e1 + e2

• If e1 and e2 are expressions then so is e1 − e2

• If e1 and e2 are expressions then so is e1 ∗ e2
• If e1 and e2 are expressions then so is e1/e2

• If e is an expression and n is a number then so is e^n

• If e is an expression then so is (e)

The input to the parser is provided as a list of tokens. A token is either a
number or an atom of the form

’+’ ’-’ ’/’ ’*’ ’^’ ’(’ ’)’

1

The predicate token/1 recognizes tokens:

token(X) :- number(X).

token(X) :- member(X,[’+’,’-’,’*’,’/’,’^’,’(’,’)’]).

(a) (*) Write a grammar defining nonterminal exp that correctly parses fully-
parenthesized expressions. (That is, expressions like (1+2)*3 or 1+(2*3)
where enough parentheses have been added to eliminate any ambiguity.)

(b) (*) Building on the expression parser in the previous question, param-
eterize the nonterminals in the grammar with a number V that is the
value of the expression (evaluated using is). Thus, evaluating

exp(X,[’(’,2,’+’,2,’)’],[])

should yield X=4.

(c) (**) In the absence of parentheses we want to treat multiplication and
division as having higher precedence than addition and subtraction. For
example, we want to treat the token sequence [1,’+’,2,’*’,3] the
same as [’(’,1,’+’,’(’,2,’*’,3,’)’,’)’], and both should evaluate
(only) to 7. Modify the DCG from the previous part to handle expres-
sions with parentheses omitted according to the usual precedence rules.
Each valid token sequence should evaluate to a unique value. Avoid
left-recursion.

2

