1. **Cut & negation** Consider the following facts:

 \[r(1). \ r(2). \]
 \[s(1). \ s(3). \]

Draw the depth-first proof search trees for the following queries, showing each solution as well as each failing branch, and indicating which branches are discarded by cuts.

 (a) \[r(X), \!, \ s(Y) \]
 (b) \[r(X), \ s(Y), \! \]
 (c) \[r(X), \ +(s(X)) \]
 (d) \[r(X), \!, \ +(s(X)) \]
 (e) \[r(X), \ +(r(X)) \]
 (f) \[+(+(r(X))) \]
 (g) \[+(+(r(3))) \]

2. **Atom and list manipulation** A substitution cipher is a simple encryption method in which. For example, the Caesar cipher replaces shifts each letter in a string by 3:

 \[abcdefghijklmnopqrstuvwxyz \]
 \[abcdefghijklmnopqrstuvwxyz\]
 so that a simple message such as hello world would be encoded as ebiil tloia. Assume messages are atoms that may contain spaces, lower or uppercase letters, numbers, or punctuation. Define a predicate \(\text{caesar}/2 \) that relates a message with its encoding.

 For this problem you will need to use a special predicate \(\text{atom_chars}/2 \) that relates an atom with the list of characters of that atom.

3. **Input/output** Building on the solution to the previous part, define a predicate \(\text{encode}/0 \) that repeatedly reads an atom from the input, encodes it using the Caesar cipher, and writes it to the output.

4. (*) **Using cut & negation** Consider the fibonacci program:
fib(0,0).
fib(1,1).
fib(N,P) :- N >= 2,
 M is N-1, fib(M,F),
 L is M-1, fib(L,G),
 P is F+G.

(a) Rewrite the program to avoid unnecessary backtracking by adding (meaning-preserving, or “green”) cuts.

(b) Rewrite the program to avoid the explicit \(N \geq 2 \) test, using cuts. The resulting program should still work properly when called with a ground number \(N \geq 0 \), but does not have to work if \(N < 0 \).

(c) Rewrite the program to use negation-as-failure (covered in Tutorial 1) instead of the inequality test. Is this a good idea from the point of view of efficiency?

5. (**): Collecting solutions This problem uses the setof/3, bagof/3 and findall/3 predicates (discussed in Lecture 3 and LPN chapter 11) and the Simpsons database from Tutorial 1.

(a) Use setof to define a predicate that calculates:

i. the set of all descendants of a person.
ii. the set of all people that have two or more descendants.
iii. the set of all people that have no descendants.

For part (iii), you may find the person/1 predicate (defined in Tutorial 1) useful.

(b) Using findall define a predicate flatten/2 that takes a list of lists and flattens it to a list, so that on the success of findall(Xs,Ys) each element of Ys is an element of an element of Xs.

Experiment with bagof and setof instead of findall, with different inputs (and quantifiers) to see the differences in behavior.

6. (**): Assert/retract In this problem we will use the assert/1 predicate. This is covered in Lecture 5, and LPN chapter 11. Essentially, assert/1 adds a fact or clause to the program dynamically.

Many Prolog implementations use first-argument indexing, meaning that it is often a lot faster at finding the next rule to apply if the first argument of the predicate is known.

Use assert/1 to define a goal buildcaesar/0 that always succeeds by building a dynamic predicate table/2 that tabulates the Caesar cipher table, and use this relation instead of caesarchar/2.

Note: You will need to add a line :- dynamic table/2, to your Prolog file to declare table/2 as a dynamic predicate.