
Logic Programming

Theory Lecture 7:

Negation as Failure

Richard Mayr

School of Informatics

6th November 2014

Negation as failure: problem 1

Prolog’s treatment of negation as failure is a procedural rather
than declarative operation.

For example, the program

woman(alice).

man(bob).

gives rise to the following queries and responses
?- \+ man(X), woman(X).

no

?- woman(X), \+ man(X).

X = alice

So the comma “,” can no longer be understood as the
commutative operation of logical conjunction.

The problem here is the use of negation on non-ground formulas.

Negation as failure: problem 1

Prolog’s treatment of negation as failure is a procedural rather
than declarative operation.

For example, the program

woman(alice).

man(bob).

gives rise to the following queries and responses
?- \+ man(X), woman(X).

no

?- woman(X), \+ man(X).

X = alice

So the comma “,” can no longer be understood as the
commutative operation of logical conjunction.

The problem here is the use of negation on non-ground formulas.

Negation as failure: problem 2

Even for ground instances of negation, the procedural behaviour of
Prolog programs does not match the declarative reading.

Example program and query.

p :- \+ p.

?- p.

Prolog goes into a loop on this, but under the declarative reading,
p is a logical consequence of the theory.

The problem here is the inclusion of negated formulas in the
program.

Negation as failure: problem 2

Even for ground instances of negation, the procedural behaviour of
Prolog programs does not match the declarative reading.

Example program and query.

p :- \+ p.

?- p.

Prolog goes into a loop on this, but under the declarative reading,
p is a logical consequence of the theory.

The problem here is the inclusion of negated formulas in the
program.

Restricting negation as failure

Today we shall make declarative sense of negation as failure with
two major restrictions.

I Only ground atomic formulas appear negated.

I Negations appear only in queries, not in programs.

Even this restrictive setting causes complications.

woman(alice).

man(bob).

?- \+ man(alice).

yes

However,

woman(alice), man(bob) 6|= ¬man(alice)

Thus the conclusion is not a logical consequence of the program.

We address this by “completing” the program to a larger logical
theory of which the conclusion is a consequence.

Even this restrictive setting causes complications.

woman(alice).

man(bob).

?- \+ man(alice).

yes

However,

woman(alice), man(bob) 6|= ¬man(alice)

Thus the conclusion is not a logical consequence of the program.

We address this by “completing” the program to a larger logical
theory of which the conclusion is a consequence.

Circumscribing knowledge

We view our program as a logical theory expressing knowledge
about the world.

In several situations, it is convenient to assume that the program
contains complete information about certain kinds of logical
statements.

We can then make additional inferences about the world based on
the assumed completeness of our knowledge.

The Closed World Assumption (CWA) makes the assumption that
the program contains complete knowledge about which ground
atomic formulas are true.

Consider our simple example

woman(alice).

man(bob).

If we impose the CWA then we can conclude that neither
woman(bob) nor man(alice) hold, since if either of these were
true then our program would not contain complete knowledge
about true ground atomic formulas.

Thus the CWA allows us to “complete” our knowledge base to the
larger theory

woman(alice), man(bob), ¬woman(bob), ¬man(alice)

Note that we are here adding negated atomic formulas to the
knowledge base.

Closed World Assumption in general

A theory T in predicate logic is a set of sentences. (We do not
insist that T contain only definite clauses.)

A theory T is said to be complete for ground atomic formulas if,
for every ground atomic formula A, either T |= A or T |= ¬A.

Let T be any theory (it does not have to be complete for ground
atomic formulas). We define a new theory CWA(T) by:

CWA(T) = T ∪ {¬A | A is a ground atomic formula and T 6|= A}

By definition, the theory CWA(T) is complete for ground atomic
formulas.

(Formulas that are either atomic or negated atomic are often called
literals. Thus CWA(T) is complete for ground literals.)

Example 1

Let T be the theory (in definite clause logic)

∀X. cheap(X) → nasty(X)

∀X. free(X) → cool(X)

cheap(windows)

free(linux)

cool(mac)

Then CWA(T) adds the following ground atomic formulas to T

¬free(windows), ¬cool(windows), ¬cheap(linux),
¬nasty(linux), ¬free(mac), ¬cheap(mac), ¬nasty(mac)

Example 1

Let T be the theory (in definite clause logic)

∀X. cheap(X) → nasty(X)

∀X. free(X) → cool(X)

cheap(windows)

free(linux)

cool(mac)

Then CWA(T) adds the following ground atomic formulas to T

¬free(windows), ¬cool(windows), ¬cheap(linux),
¬nasty(linux), ¬free(mac), ¬cheap(mac), ¬nasty(mac)

Closed World Assumption in definite clause logic

Note that the theory CWA(T) is not itself a definite clause theory,
even when T is a definite clause theory. However, the assumption
that T is a definite clause theory has one important consequence.

Theorem
Let T be a set of definite clauses. Then the theory CWA(T) is
consistent (that is, there is no formula F such that CWA(T) |= F
and CWA(T) |= ¬F).

Proof
For a ground atomic formula A, the minimal Herbrand model H of
T satisfies that H |= A if and only if T |= A (see Lecture 6
“Importance of minimal Herbrand model”). Hence, if T 6|= A then
H |= ¬A. Thus the minimal Herbrand model for T is also a model
for CWA(T). Any theory that has a model is consistent.

Soundness of negated queries

Suppose T is a definite clause theory and A is a ground atomic
formula. Suppose also that the prolog query

?- \+ A.

succeeds. Then CWA(T) |= ¬A.

Also H |= ¬A, where H is the minimal Herbrand model for T .

Prolog’s behaviour on queries including negated ground queries can
thus be considered either as sound relative to the Closed World
Assumption, or as sound relative to the minimal Herbrand model.

Non-monotonicity

Logical consequence is monotonic in the sense that, given two
theories T ,T ′ with T ⊆ T ′ then it holds that

T |= F implies T ′ |= F ,

for all formulas F .

The Closed World Assumption is non-monotonic in the sense that,
given two theories T ,T ′ with T ⊆ T ′ then it does not hold in
general that

CWA(T) |= F implies CWA(T ′) |= F ,

for all formulas F .

Example 1 (continued)

Let T ′ be our example theory extended with the new axiom

cheap(linux)

Then CWA(T ′) adds the following ground atomic formulas to T ′

¬free(windows), ¬cool(windows),
¬free(mac), ¬cheap(mac), ¬nasty(mac)

We have T ⊆ T ′ and

CWA(T) |= ¬cheap(linux) but CWA(T ′) 6|= ¬cheap(linux)

where the latter claim holds because CWA(T ′) |= cheap(linux)

and CWA(T ′) is consistent (since T ′ is a definite clause theory).

This illustrates non-monotonicity.

Summarizing theorem

Theorem. Let T be a definite clause theory, and let H be its
minimum Herbrand model.

Then the statements below, about any ground atomic formula A,

1. The Prolog query \+ A succeeds.

2. CWA(T) |= ¬A.

3. H |= ¬A.

enjoy the following implications

1 =⇒ 2 ⇐⇒ 3

Two issues with the CWA

1. Because of the undecidability of definite clause predicate logic
(see Lecture 5), it is not possible to compute the theory
CWA(T) from the theory T .

2. The CWA over-approximates the behaviour of negation by
failure. Consider the propositional theory T consisting of a
single axiom

p → p

Then the Prolog query \+ p goes into a loop. Nevertheless,

CWA(T) |= ¬p

Clark completion

The Clark completion is an alternative completion procedure, used
for modelling negation by failure.

In contrast to the CWA, the Clark completion is computable.

However, whereas CWA(T) can be defined for any logical theory
T , the Clark completion requires T to be a definite-clause theory.

(Actually, Clark completion can be defined for a generalization of
definite-clause logic including negation. But this is beyond the
scope of this lecture.)

Roughly, the Clark completion makes the assumption that the
axioms of the definite clause program completely axiomatize all
possible reasons for atomic formulas to be true.

Example 2

Suppose we have a theory in which the only clauses with head
predicate british are

∀X. english(X) → british(X)

∀X. scottish(X) → british(X)

∀X. welsh(X) → british(X)

Then the Clark formula for the predicate british is

∀X. (british(X) ↔ (english(X) ∨ scottish(X) ∨ welsh(X)))

(The head predicate in a clause is: the predicate on the right-hand
side of the implication, if the clause is an implication; and the only
predicate in the formula, if the clause is an atomic formula.)

Example 2 (continued)

Suppose the remaining axioms are

english(elizabeth)

scottish(mary)

scottish(james)

Then the Clark formulas for the three predicates english,
scottish, welsh are

∀X. (english(X) ↔ X = elizabeth)

∀X. (scottish(X) ↔ (X = mary ∨ X = james))

∀X. (¬welsh(X))

Example 2 (completed)

The Clark completion of the full theory:

∀X. english(X) → british(X) ,

∀X. scottish(X) → british(X) ,

∀X. welsh(X) → british(X) ,

english(elizabeth), scottish(mary), scottish(james)

is the theory:

∀X. (british(X) ↔ (english(X) ∨ scottish(X) ∨ welsh(X)))

∀X. (english(X) ↔ X = elizabeth)

∀X. (scottish(X) ↔ (X = mary ∨ X = james))

∀X. (¬welsh(X))

elizabeth 6= james james 6= mary mary 6= elizabeth

Note that the Clark completion is not itself a definite clause theory.

General completion procedure: Step 1

We now consider the general procedure for constructing the Clark
completion Comp(T) of a definite clause theory T .

First we rewrite each individual definite clause in the theory. The
general form of a definite clause is

∀~X. (A1 ∧ · · · ∧ Ak → p(~t))

where ~X is a tuple of variables, and ~t is a tuple of n-terms, where n
is the arity (= number of arguments) of the predicate p.

We rewrite the clause to the equivalent formula

∀~Y. (∃~X. A1 ∧ · · · ∧ Ak ∧ ~Y = ~t) → p(~Y)

where ~Y is a tuple of n new variables.

Justifying this equivalence

The formula
∀~X. (A1 ∧ · · · ∧ Ak → p(~t))

is equivalent to

∀~Y, ~X. (A1 ∧ · · · ∧ Ak ∧ ~Y = ~t → p(~Y))

which is, in turn, equivalent to the desired formula

∀~Y. (∃~X. A1 ∧ · · · ∧ Ak ∧ ~Y = ~t) → p(~Y)

because of the general logical equivalence

(∀ X. (F → G)) ↔ ((∃ X. F)→ G) ,

which holds whenever the variable X does not appear in the
formula G .

Some special cases

∀~X. (A1 ∧ · · · ∧ Ak → p(~t))

For special cases of this formula, one can simplify the equivalent
formulas.

When k = 0 (i.e., the axiom is a Prolog fact rather than rule) the
equivalent formula is

∀~Y. (∃~X. ~Y = ~t) → p(~Y)

When the formula is ground, the equivalent formula simplifies to

∀~Y. A1 ∧ · · · ∧ Ak ∧ ~Y = ~t → p(~Y)

When ~t is the vector of variables ~X, there is no need to further
rewrite the original clause

∀~X. (A1 ∧ · · · ∧ Ak → p(~X))

General completion procedure: Step 2
We have now rewritten each clause with head predicate p to an
equivalent formula

∀~Y. E → p(~Y)

Suppose there are m such clauses for p, giving

∀~Y. E1 → p(~Y)

∀~Y. E2 → p(~Y)
...

∀~Y. Em → p(~Y)

Taken together, these formulas are equivalent to the single formula

∀~Y. (E1 ∨ E2 ∨ · · · ∨ Em) → p(~Y)

The Clark formula for the predicate p is then the formula

∀~Y. p(~Y) ↔ (E1 ∨ E2 ∨ · · · ∨ Em)

A special case

In the case that m = 0 (i.e., when there are no clauses with head
predicate p) the Clark formula is simply

∀~Y.¬p(~Y)

This can be understood as a genuine special case of the previous
definition, since the correct definition of an empty disjunction is
the truth value false.

General completion procedure: Step 3

The Clark completion, Comp(T) of the definite clause theory T is
the theory consisting of:

I Clark formulas for every predicate p appearing in the theory T .

I ¬(t1 = t2) for every pair t1, t2 of non-unifiable terms.

Clark completion of Example 1

As another illustrative example, here is the Clark completion of
Example 1.

∀X. nasty(X) ↔ cheap(X)

∀X. cool(X) ↔ (free(X) ∨ X = mac)

∀X. cheap(X) ↔ X = windows

∀X. free(X) ↔ X = linux

linux 6= mac mac 6= windows windows 6= linux

Properties of Clark completion

1. The theory Comp(T) extends T .
That is, T |= F implies Comp(T) |= F , for all formulas F .

2. The theory Comp(T) is consistent.
Indeed, the minimal Herbrand model of T is a model of
Comp(T).

3. If Comp(T) |= A, where A is an atomic formula, then T |= A.
(That is, the Clark completion adds no new positive
information.)

4. If the prolog query \+ A succeeds, where A is a ground atomic
formula. Then Comp(T) |= ¬A.
(That is, negation by failure for ground queries is sound
relative to the Clark completion.)

Two issues with the CWA revisited

1. In contrast to the CWA, one can compute Comp(T) from T .
Indeed, the description we have given for this theory
essentially gives an algorithm for constructing it.

2. The Clark completion more precisely captures the behaviour
of Prolog’s negation by failure. Consider again the
propositional theory T consisting of a single axiom

p → p

As before, the Prolog query \+ p goes into a loop. The Clark
completion of this theory is the theory

p ↔ p

Thus Comp+(T) 6|= ¬p, which more closely models Prolog’s
behaviour.

Clark completion — summary

I The Clark completion of T can be effectively computed from
T and soundly models negation by failure.

I It is more faithful to Prolog behaviour on negated queries
than the CWA.

I Although it has been described in this lecture for definite
clause theories only, the Clark completion can be more
generally defined for a more general class of “negation as
failure” programs and goals.

Main points today

Procedural nature of negation by failure

Closed World Assumption

Non-monotonicity of CWA

Clark completion

