
Logic Programming

Theory Lecture 5:

(In)completeness for

Definite Clause Predicate Logic

Richard Mayr

School of Informatics

27th October 2014



Recap (Lecture 3): Definite clause predicate logic

A definite clause is a formula of one of the two shapes below

B (a Prolog fact B . )

A1 ∧ · · · ∧ Ak → B (a Prolog rule B :- A1, . . . ,Ak .)

where A1, . . . ,Ak ,B are all atomic formulas.

A logic program is a list F1, . . . ,Fn of definite clauses

A goal is a list G1, . . . ,Gm of atomic formulas.

The job of the system is to ascertain whether the logical
consequence below holds.

∀Vars(F1).F1, . . . ,∀Vars(Fn).Fn |= ∃Vars(G1, . . . ,Gm).G1∧· · ·∧Gm



Example (Lecture 4): Leaf-labelled binary trees

E.g.

a
b c a

nd(lf(a),nd(lf(b),nd(lf(c),lf(a))))

The path predicate :

path(a, nd(lf(a),nd(lf(b),nd(lf(c),lf(a)))), [l])

path(b, nd(lf(a),nd(lf(b),nd(lf(c),lf(a)))), [r,l])

path(c, nd(lf(a),nd(lf(b),nd(lf(c),lf(a)))), [r,r,l])

path(a, nd(lf(a),nd(lf(b),nd(lf(c),lf(a)))), [r,r,r])



Example program, query and result (Lecture 4)

Program

path(X,lf(X),[])

path(X,T,P) → path(X,nd(T,U),[l|P])

path(X,T,P) → path(X,nd(S,T),[r|P])

Goal

path(b,nd(lf(a),nd(lf(b),lf(c))),Q), path(Y,nd(lf(c),nd(lf(a),lf(b))),Q)

Result
{ Q = [r,l], Y = a }



Prolog proof search and inference

Given a program
F1, . . . ,Fn

and goal
G1, . . . ,Gm ,

a Prolog proof search, if successful, results in a substitution θ,
witnessing the implicit existential quantification in the goal.

As in the case of propositional logic (Lectures 1 and 2), it is
helpful to understand the proof search procedure as constructing a
derivation (proof) in an inference system for definite clause
predicate logic.



Inference system (a.k.a. SLD resolution)

As before, we use a single inference rule to derive new established
goals from goals already established.

(C1, . . . ,Cl−1,A1, . . . ,Ak ,Cl+1, . . . ,Cm)θ A1 ∧ · · · ∧ Ak → B

C1, . . . ,Cl−1, Cl , Cl+1, . . . ,Cm

where:

I 1 ≤ l ≤ m,

I k ≥ 0,

I A1 ∧ · · · ∧ Ak → B is one of the program clauses Fi , with its
variables renamed to variables not appearing in C1, . . . ,Cm.

I θ is the most general unifier of B and Cl .

A derivation (or proof) is a sequence of applications of the above
rule, in which the topmost rule has the empty goal as its premise.



Technical points

The general format A1 ∧ · · · ∧ Ak → B of clauses includes Prolog
facts as the special case in which k = 0.

In this case, the inference rule specialises to

(C1, . . . ,Cl−1, Cl+1, . . . ,Cm)θ B

C1, . . . ,Cl−1, Cl , Cl+1, . . . ,Cm

Technical Lemma 1
If the two goals G1, . . . ,Gm and G ′

1, . . . ,G
′
n are derivable and have

no variables in common then the juxtaposed goal
G1, . . . ,Gm,G

′
1, . . . ,G

′
n is also derivable.

Technical Lemma 2
If a substitution instance (G1, . . . ,Gm)θ of a goal G1, . . . ,Gm is
derivable then the goal G1, . . . ,Gm is itself derivable.



Program:

F1 = path(X,lf(X),[])

F2 = path(X,T,P) → path(X,nd(T,U),[l|P])

F3 = path(X,T,P) → path(X,nd(S,T),[r|P])

Example derivation:

ε F1

path(Y, lf(a), []) F2

path(Y, nd(lf(a), lf(b)), [l]) F3

path(Y, nd(lf(c), nd(lf(a), lf(b))), [r, l]) F1

path(b, lf(b), Q′′) , path(Y, nd(lf(c), nd(lf(a), lf(b))), [r, l|Q′′]) F2

path(b, nd(lf(b), lf(c)), Q′) , path(Y, nd(lf(c), nd(lf(a), lf(b))), [r|Q′]) F3

path(b, nd(lf(a), nd(lf(b), lf(c))), Q) , path(Y, nd(lf(c), nd(lf(a), lf(b))), Q)



Prolog proof search finds derivations

Every successful branch in a Prolog search tree gives rise to a
derivation in the inference system.

Essentially, we construct the derivation by turning the branch
upside down.

This observation underlies:

Proposition
If Prolog proof search, for a program F1, . . . ,Fn and goal
G1, . . . ,Gm succeeds then the goal has a derivation in the inference
system.



Soundness of inference system

Theorem
If goal G1, . . . ,Gm is derivable in the inference system for a
program F1, . . . ,Fn, then

∀Vars(F1).F1, . . . ,∀Vars(Fn).Fn |= ∃Vars(G1, . . . ,Gm).G1∧· · ·∧Gm

Proof

(Non-examinable)

Similar to proof of soundness in the propositional case (Lecture 2),
though the definition of logical consequence in terms of structures,
rather than truth-value interpretations, adds (significant but
tedious) complications.



Soundness of inference system

Theorem
If goal G1, . . . ,Gm is derivable in the inference system for a
program F1, . . . ,Fn, then

∀Vars(F1).F1, . . . ,∀Vars(Fn).Fn |= ∃Vars(G1, . . . ,Gm).G1∧· · ·∧Gm

Proof (Non-examinable)
Similar to proof of soundness in the propositional case (Lecture 2),
though the definition of logical consequence in terms of structures,
rather than truth-value interpretations, adds (significant but
tedious) complications.



Completeness and Incompleteness

Completeness of inference system
For any program F1, . . . ,Fn and goal G1, . . . ,Gm such that

∀Vars(F1).F1, . . . ,∀Vars(Fn).Fn |= ∃Vars(G1, . . . ,Gm).G1 ∧ · · · ∧ Gm

there exists a derivation of G1, . . . ,Gm in the inference system . . .

Incompleteness of Prolog proof search
. . . however, Prolog proof search for the goal G1, . . . ,Gm need not
succeed (it may fail to terminate).

The example used to demonstrate incompleteness of propositional
Prolog search in Lecture 2 is again an example of the
incompleteness of proof search in the case of predicate logic.

The proof of completeness of the inference system is more involved
for predicate logic than for propositional logic. We consider this in
some detail, since it involves an important construction.



Completeness and Incompleteness

Completeness of inference system
For any program F1, . . . ,Fn and goal G1, . . . ,Gm such that

∀Vars(F1).F1, . . . ,∀Vars(Fn).Fn |= ∃Vars(G1, . . . ,Gm).G1 ∧ · · · ∧ Gm

there exists a derivation of G1, . . . ,Gm in the inference system . . .

Incompleteness of Prolog proof search
. . . however, Prolog proof search for the goal G1, . . . ,Gm need not
succeed (it may fail to terminate).

The example used to demonstrate incompleteness of propositional
Prolog search in Lecture 2 is again an example of the
incompleteness of proof search in the case of predicate logic.

The proof of completeness of the inference system is more involved
for predicate logic than for propositional logic. We consider this in
some detail, since it involves an important construction.



Outline proof of completeness

Suppose that

∀Vars(F1).F1, . . . ,∀Vars(Fn).Fn |= ∃Vars(G1, . . . ,Gm).G1∧· · ·∧Gm

We shall construct a very special structure (in the sense of Lecture
3), the minimal Herbrand model of the program F1, . . . ,Fn.

Because the minimal Herbrand model H is a model, we have

H |= ∃Vars(G1, . . . ,Gm).G1 ∧ · · · ∧ Gm

Due to the cunning way H is defined, it will follow that the goal
G1, . . . ,Gm is derivable.



Jacques Herbrand (1908–1931)



The Herbrand universe

A term is said to be ground if it contains no variables.

ground term ::= constant

| fn symbol (ground term list)

ground term list ::= ground term

| ground term, ground term list

Note that just the variables have been omitted from the grammar
for terms from Lecture 3.

The Herbrand universe is just the set of all ground terms.

(We need to ensure that there is at least one constant symbol in
our vocabulary in order that the Herbrand universe is non-empty.)



The minimal Herbrand model

We define the structure H as follows.

I The universe is the Herbrand universe.

I A constant c is interpreted by cH = c.

I A function symbol f/k is interpreted by
fH(u1, . . . , uk) = f(u1, . . . , uk).

I A predicate symbol p/k is interpreted by

pH(u1, . . . , uk) = true ⇔ the goal p(u1, . . . , uk) is derivable

(N.B., we are using u1, u2, . . . to range over ground terms.)



Technical observation

Consider any atomic formula p(t1, . . . , tk) with
Vars(t1, . . . , tk) = X1, . . . , Xl , and let u1, . . . , ul be ground terms.

By definition of pH, we have that

H |=[X1=u1,...,Xl=ul ] p(t1, . . . , tk)

holds if and only if the ground atomic goal below has a derivation.

p(t1, . . . , tk){X1 = u1, . . . , Xl = ul}



Proof of completeness (started)

Thus far, we have defined the structure H.

The next step is to show that H is indeed a model of the program.
That is, we show that

H |= ∀Vars(Fi ).Fi

for every Fi in F1, . . . ,Fn.

The detailed argument is given in the Appendix of this lecture.

Now, since

∀Vars(F1).F1, . . . ,∀Vars(Fn).Fn |= ∃Vars(G1, . . . ,Gm).G1 ∧ · · · ∧ Gm

and H |= ∀Vars(F1).Fi , for every Fi in F1, . . . ,Fn, it follows that:

H |= ∃Vars(G1, . . . ,Gm).G1 ∧ · · · ∧ Gm



Proof of completeness (completed)
We have:

H |= ∃Vars(G1, . . . ,Gm).G1 ∧ · · · ∧ Gm

Let Y1, . . . , Yl be Vars(G1, . . . ,Gm). By definition of satisfaction,
there exist ground terms u1, . . . , ul such that

H |=[Y1:=u1,...,Yl :=ul ] G1 ∧ · · · ∧ Gm

So, by the technical observation, each of the atomic formulas Giθ,
where θ is the substitution {Y1 = u1, . . . , Yl = ul}, is individually
derivable as a ground atomic goal.

By technical lemma 1, it follows that the amalgamated goal

G1θ, . . . ,Gmθ , which is the same as (G1, . . . ,Gm)θ

is derivable. Whence, by technical lemma 2, so is

G1, . . . , Gm



Complete proof search

We have a complete inference system for programs consisting of
definite clauses in predicate logic, but Prolog’s proof search
procedure is incomplete.

As in propositional logic, incompleteness can be remedied by
changing the search strategy.

For example, a complete procedure is obtained by making both the
following two changes.

1. Adopt a breadth-first search strategy.

2. Allow the search to choose any goal Gi from the current goal
list G1, . . . ,Gm (instead of always choosing G1)

This provides a complete proof strategy, but not a decision
procedure. The search does not terminate in cases in which a goal
is not provable.



Undecidability

A decision procedure for definite clause predicate logic would be an
algorithm that, given a goal and a program, outputs yes if the goal
is a logical consequence of the program, and no otherwise. Note
that a decision procedure is required to always terminate with one
answer or the other.

Unlike in propositional logic, it is impossible to provide a decision
procedure for definite clause predicate logic.

One can show that the halting problem (the question of deciding
whether the execution of a Turing machine eventually halts) can
be encoded as a query in definite clause predicate logic.

In fundamental work, in 1936, Alan Turing showed that the halting
problem is an undecidable problem

(The undecidability of the halting problem is covered in detail in
UG3 “Computability and Intractability”)



Alan Turing (1912–1954)



Conclusions (reprising Lecture 2)

Prolog proof search is an example of good engineering design based
on an interplay between theoretical and practical considerations.

I It has a strong theoretical foundation, in being based on a
complete inference system for definite-clause predicate logic.

I However, its incomplete proof search procedure is a good
implementation choice, allowing efficient proof search in the
context of predicate logic, and permitting the programmer to
tailor programs with regard to efficiency issues.



Main points today

inference system (SLD resolution) for definite clause predicate logic

soundness of inference system

completeness of inference system

incompleteness of Prolog proof search strategy

Herbrand universe

minimal Herbrand model

undecidability of definite clause predicate logic



Appendix: The minimal Herbrand model is a model

Suppose Fi is A1 ∧ · · · ∧ Ak → B with Vars(Fi ) = X1, . . . , Xl .
To verify that H |= ∀Vars(Fi ).Fi , we must show that, for all
ground terms u1, . . . , ul it holds that

H |=[X1:=u1,...,Xl :=ul ] A1 ∧ · · · ∧ Ak → B

Suppose then that H |=[X1:=u1,...,Xl :=ul ] Aj for every j ∈ {1, . . . , k}.
By the technical observation, every ground atomic goal

Aj{X1 = u1, . . . , Xl = ul}

is derivable. Hence, applying technical lemma 1, we can derive the
premise whence conclusion of the inference rule below

(A1, . . . ,Ak){X1 = u1, . . . , Xl = ul} Fi

B{X1 = u1, . . . , Xl = ul}

Now, by our technical observation, we have as required:

H |=[X1:=u1,...,Xl :=ul ] B


