
Logic Programming

Theory Lecture 3:

Definite Clause Predicate Logic

Richard Mayr

School of Informatics

6th October 2014

Predicate logic / predicate calculus / first-order logic

So far, we have looked only at propositional logic, where formulas
are built from propositional atoms which express (indecomposable)
propositions (statements which are either true or false).

Predicate logic has a richer vocabulary and expressivity.

I Its terms represent elements in an assumed world of discourse
called the universe

I Its predicates express relationships between these elements.

I Its formulas express propositions (statements that are either
true of false) about the universe.

Example universe and terms

Unlabelled binary trees.

E.g.

· · · · · ·
leaf node(leaf,leaf) node(leaf,node(leaf,leaf))

· · ·
· · · ·

node(node(node(leaf,node(leaf,leaf)),leaf),node(leaf,node(leaf,leaf)))

Example predicates

reflection/2

· · · · · ·

reflection(node(node(leaf,leaf),leaf), node(leaf,node(leaf,leaf)))

¬reflection(node(node(leaf,leaf),leaf), node(node(leaf,leaf),leaf))

symmetric/1

· · · · · · · · · · · ·

symmetric(node(node(node(leaf,leaf),leaf),node(leaf,node(leaf,leaf))))

¬symmetric(node(node(node(leaf,leaf),leaf),node(node(leaf,leaf),leaf)))

Example logic program and query

For predicate logic (just as for propositional logic), a query is a
formula and a program is a collection of formulas (the knowledge
base).

Program:

reflection(leaf,leaf)

reflection(S1,T1) ∧ reflection(S2,T2) → reflection(node(S1,S2),node(T2,T1))

reflection(T,T) → symmetric(T)

Query:
symmetric(X)

Let’s try this in Sicstus Prolog

Program:

reflection(leaf,leaf).

reflection(node(S1,S2),node(T2,T1)) :- reflection(S1,T1), reflection(S2,T2).

symmetric(T) :- reflection(T,T).

Query:

| ?- symmetric(X).

X = leaf

X = node(leaf,leaf)

X = node(node(leaf,leaf),node(leaf,leaf))

X = node(node(leaf,node(leaf,leaf)),node(node(leaf,leaf),leaf))

X = ...

Let’s try this in Sicstus Prolog

Program:

reflection(leaf,leaf).

reflection(node(S1,S2),node(T2,T1)) :- reflection(S1,T1), reflection(S2,T2).

symmetric(T) :- reflection(T,T).

Query:

| ?- symmetric(X).

X = leaf

X = node(leaf,leaf)

X = node(node(leaf,leaf),node(leaf,leaf))

X = node(node(leaf,node(leaf,leaf)),node(node(leaf,leaf),leaf))

X = ...

Let’s try this in Sicstus Prolog

Program:

reflection(leaf,leaf).

reflection(node(S1,S2),node(T2,T1)) :- reflection(S1,T1), reflection(S2,T2).

symmetric(T) :- reflection(T,T).

Query:

| ?- symmetric(X).

X = leaf

X = node(leaf,leaf)

X = node(node(leaf,leaf),node(leaf,leaf))

X = node(node(leaf,node(leaf,leaf)),node(node(leaf,leaf),leaf))

X = ...

Let’s try this in Sicstus Prolog

Program:

reflection(leaf,leaf).

reflection(node(S1,S2),node(T2,T1)) :- reflection(S1,T1), reflection(S2,T2).

symmetric(T) :- reflection(T,T).

Query:

| ?- symmetric(X).

X = leaf

X = node(leaf,leaf)

X = node(node(leaf,leaf),node(leaf,leaf))

X = node(node(leaf,node(leaf,leaf)),node(node(leaf,leaf),leaf))

X = ...

Let’s try this in Sicstus Prolog

Program:

reflection(leaf,leaf).

reflection(node(S1,S2),node(T2,T1)) :- reflection(S1,T1), reflection(S2,T2).

symmetric(T) :- reflection(T,T).

Query:

| ?- symmetric(X).

X = leaf

X = node(leaf,leaf)

X = node(node(leaf,leaf),node(leaf,leaf))

X = node(node(leaf,node(leaf,leaf)),node(node(leaf,leaf),leaf))

X = ...

Let’s try this in Sicstus Prolog

Program:

reflection(leaf,leaf).

reflection(node(S1,S2),node(T2,T1)) :- reflection(S1,T1), reflection(S2,T2).

symmetric(T) :- reflection(T,T).

Query:

| ?- symmetric(X).

X = leaf

X = node(leaf,leaf)

X = node(node(leaf,leaf),node(leaf,leaf))

X = node(node(leaf,node(leaf,leaf)),node(node(leaf,leaf),leaf))

X = ...

Issues to address

I Why are these answers correct?

(Logical consequence — today’s lecture)

I How Prolog computes the answers

(Proof search — Theory Lecture 4)

I Prolog does not find all correct answers, though it would be
possible for it to do so in principle

(Incompleteness and completeness — Theory Lecture 5)

The story is very similar to that of Theory Lectures 1–2,
except that we are now considering the richer paradigm of
predicate logic, rather than just propositional logic.

Issues to address

I Why are these answers correct?

(Logical consequence — today’s lecture)

I How Prolog computes the answers

(Proof search — Theory Lecture 4)

I Prolog does not find all correct answers, though it would be
possible for it to do so in principle

(Incompleteness and completeness — Theory Lecture 5)

The story is very similar to that of Theory Lectures 1–2,
except that we are now considering the richer paradigm of
predicate logic, rather than just propositional logic.

Issues to address

I Why are these answers correct?

(Logical consequence — today’s lecture)

I How Prolog computes the answers

(Proof search — Theory Lecture 4)

I Prolog does not find all correct answers, though it would be
possible for it to do so in principle

(Incompleteness and completeness — Theory Lecture 5)

The story is very similar to that of Theory Lectures 1–2,
except that we are now considering the richer paradigm of
predicate logic, rather than just propositional logic.

Issues to address

I Why are these answers correct?

(Logical consequence — today’s lecture)

I How Prolog computes the answers

(Proof search — Theory Lecture 4)

I Prolog does not find all correct answers, though it would be
possible for it to do so in principle

(Incompleteness and completeness — Theory Lecture 5)

The story is very similar to that of Theory Lectures 1–2,
except that we are now considering the richer paradigm of
predicate logic, rather than just propositional logic.

Issues to address

I Why are these answers correct?

(Logical consequence — today’s lecture)

I How Prolog computes the answers

(Proof search — Theory Lecture 4)

I Prolog does not find all correct answers, though it would be
possible for it to do so in principle

(Incompleteness and completeness — Theory Lecture 5)

The story is very similar to that of Theory Lectures 1–2,
except that we are now considering the richer paradigm of
predicate logic, rather than just propositional logic.

Predicate logic — terms

Terms are built from variables, constants and function symbols.

Grammar of terms:

term ::= var

| constant

| fn symbol (term list)

term list ::= term

| term, term list

In example:

constants: leaf

function symbols: node/2

variables: S1,S2,T1,T2,T,X

Predicate logic — formulas

Formulas are built from atomic formulas using
connectives ¬,∧,∨,→ and quantifiers ∀, ∃.

Grammar of formulas:

form ::= predicate (term list) (atomic formula)

| ¬form

| form ∧ form

| form ∨ form

| form→ form

| ∀var. form

| ∃var. form

In example:

predicate symbols: reflection/2, symmetric/1

Note on syntax of terms and formulas

Notice how formulas in predicate logic are carefully structured:

I Terms: built from variables, constants and function symbols.

I Atomic formulas: single predicate symbol with list of terms.

I Formulas: built from atomic formulas using connectives and
quantifiers.

So, for example,

reflection(node(leaf,X),Y)

is a legitimate atomic formula, but

node(reflection(leaf,X),Y)

is ill-formed because a predicate symbol (reflection) appears
inside a function symbol (node).
In contrast, in Prolog, there is no syntactic restriction on how
operators can be applied. Nevertheless, we shall assume that the
rules of Predicate-logic syntax are followed. (This is advisable in
practice since it aids the understandability of code.)

Motivating structures
Recall from slide 2:

I Terms represent elements in an assumed world of discourse
called the universe

I Predicates express relationships between these elements.

I Formulas express propositions (statements that are either true
of false) about the universe.

For example, the formula

∃ T. symmetric(T)

says:

there exists an element T of the universe such that the
property symmetric holds of T.

Whether this is true or not depends upon the choice of universe
and on how we specify the interpretation of constants, function
symbols and predicates in the universe.

This information is provided by the notion of structure.

Motivating structures
Recall from slide 2:

I Terms represent elements in an assumed world of discourse
called the universe

I Predicates express relationships between these elements.

I Formulas express propositions (statements that are either true
of false) about the universe.

For example, the formula

∃ T. symmetric(T)

says:

there exists an element T of the universe such that the
property symmetric holds of T.

Whether this is true or not depends upon the choice of universe
and on how we specify the interpretation of constants, function
symbols and predicates in the universe.

This information is provided by the notion of structure.

“I don’t know what you mean by ‘glory’,” Alice
said.

Humpty Dumpty smiled contemptuously. “Of
course you don’t—till I tell you. I meant ‘there’s a
nice knock-down argument for you!’”

“But ‘glory’ doesn’t mean ’a nice knock-down
argument’,” Alice objected.

“When I use a word,” Humpty Dumpty said, in
rather a scornful tone, “it means just what I choose it
to mean—neither more nor less.”

Lewis Carroll, Through the Looking Glass, Ch. VI

Structures

A structure S is given by:

I A set U, called the universe.

I For each constant c, an associated element cS of the universe.

I For each function symbol f/n, an associated n-argument
function fS : Un → U.

I For each predicate symbol p/n, an associated n-argument
function pS : Un → {true, false}.

(N.B., we write Un for the set of n-tuples of elements of U.)

The notion of structure plays a role for predicate logic analogous
to that played by interpretation for propositional logic.

Example structure S1

The “intended model” of our example language

I U is the set of unlabelled binary trees.

I leafS1 is the leaf tree · .

I nodeS1 is the function:

(T1,T2) 7→
T1 T2

I reflectionS1 and symmetricS1 are the expected relations

reflection(T1,T2) = true ⇔ T1 is the reflection of T2

symmetric(T) = true ⇔ T is symmetric

illustrated on “Example predicates” slide.

Example structure S2

We interpret the language over a different universe.

I U is the set N = {0, 1, 2, 3, . . . } of natural numbers

I leafS2 is the number 0

I nodeS2 is the function:

(n1, n2) 7→ max(n1, n2) + 1

I reflectionS2 and symmetricS2 are defined by:

reflectionS2(n1, n2) = true ⇔ n1 = n2

symmetricS2(n) = true

Example structure S3

A more arbitrarily chosen structure.

I U is the set of unlabelled binary trees.

I leafS3 is the tree
· · ·

I nodeS3 is the function:

(T1,T2) 7→ T1

I reflectionS3 and symmetricS3 are defined by:

reflectionS3(T1,T2) = true ⇔ T1 =
T2 T2

symmetricS3(T) = true ⇔ T = · ·

Interpretation of terms in a structure S

A variable assignment is a function ρ mapping variables to
elements in the universe U.

So, for every variable X, we have an associated element ρ(X) ∈ U.

The function ρ is extended from variables to all terms by:

ρ(c) = cS c a constant

ρ(f(t1, . . . , tn)) = fS(ρ(t1) . . . , ρ(tn)) f/n a function symbol

So, for every term t, we have an associated element ρ(t) ∈ U.

Satisfaction of a formula F in a structure S

Let S be a structure and ρ a variable assignment.

The next slide defines the satisfaction relation

S |=ρ F

This means:

F is true in S (under variable assignment ρ).

A formula is said to be closed (or a sentence) if every variable X in
the formula occurs inside the scope of a quantifier ∀ X. or ∃ X. (the
quantifier is said to bind the variable).

If a formula F is closed then the relationship S |=ρ F is
independent of ρ, so we can just write S |= F

Definition of satisfaction relation

S |=ρ p(t1, . . . , tn) ⇔ pS(ρ(t1), . . . , ρ(tn)) = true
S |=ρ ¬F ⇔ it is not the case that S |=ρ F
S |=ρ F1 ∧ F2 ⇔ S |=ρ F1 and S |=ρ F2

S |=ρ F1 ∨ F2 ⇔ S |=ρ F1 or S |=ρ F2

S |=ρ F1 → F2 ⇔ S |=ρ F1 implies S |=ρ F2

S |=ρ ∀ X.F ⇔ for all a ∈ U, we have S |=ρ[X:=a] F
S |=ρ ∃ X.F ⇔ there exists a ∈ U s.t. S |=ρ[X:=a] F

Here, ρ[X := a] is the modified variable assignment defined by:

ρ[X := a] (X) = a

ρ[X := a] (Y) = ρ(Y) Y any variable other than X

Logical consequence

A formula G is said to be a logical consequence of formulas
F1,F2, . . . ,Fn, notation

F1, . . . ,Fn |= G ,

iff, for all structures S and all variable assignments ρ,

if S |=ρ F1 and . . . and S |=ρ Fn then S |=ρ G .

In the case that F1,F2, . . . ,Fn,G are sentences (i.e., closed
formulas), we can simplify this to: for all structures S,

if S |= F1 and . . . and S |= Fn then S |= G .

Model

A structure S is said to be a model of the sentences F1, . . . ,Fn if

S |= F1 and . . . and S |= Fn .

We can rephrase logical consequence using the notion of model.

For all sentences F1, . . . ,Fn,H, the logical consequence

F1, . . . ,Fn |= H

holds if and only if,

∀ models S of F1, . . . ,Fn, S |= H .

Examples

Consider our example program (universally quantified)

reflection(leaf,leaf)

∀ S1,S2,T1,T2. reflection(S1,T1) ∧ reflection(S2,T2)
→ reflection(node(S1,S2),node(T2,T1))

∀ T. reflection(T,T) → symmetric(T)

I Structure S1 is a model of our example program.

I Structure S2 is a model of our example program too.

I Structure S3 is not a model of our example program because,
for example, reflection(leaf,leaf) does not hold.

Examples

Consider our example program (universally quantified)

reflection(leaf,leaf)

∀ S1,S2,T1,T2. reflection(S1,T1) ∧ reflection(S2,T2)
→ reflection(node(S1,S2),node(T2,T1))

∀ T. reflection(T,T) → symmetric(T)

I Structure S1 is a model of our example program.

I Structure S2 is a model of our example program too.

I Structure S3 is not a model of our example program because,
for example, reflection(leaf,leaf) does not hold.

Examples

Consider our example program (universally quantified)

reflection(leaf,leaf)

∀ S1,S2,T1,T2. reflection(S1,T1) ∧ reflection(S2,T2)
→ reflection(node(S1,S2),node(T2,T1))

∀ T. reflection(T,T) → symmetric(T)

I Structure S1 is a model of our example program.

I Structure S2 is a model of our example program too.

I Structure S3 is not a model of our example program because,
for example, reflection(leaf,leaf) does not hold.

Examples

Consider our example program (universally quantified)

reflection(leaf,leaf)

∀ S1,S2,T1,T2. reflection(S1,T1) ∧ reflection(S2,T2)
→ reflection(node(S1,S2),node(T2,T1))

∀ T. reflection(T,T) → symmetric(T)

I Structure S1 is a model of our example program.

I Structure S2 is a model of our example program too.

I Structure S3 is not a model of our example program because,
for example, reflection(leaf,leaf) does not hold.

Predicate logic is too expressive for computation

In propositional logic, logical consequence is decidable, albeit
inefficiently.

In predicate logic, logical consequence is not decidable. However it
is semidecidable: there exists a complete proof search procedure
that is guaranteed to find a proof of a logical consequence when
the consequence holds, but never terminates when the
consequence doesn’t hold.

Such general proof search is too inefficient to constitute a means
of computation. (For example, a search to see if the Riemann
Hypothesis is a consequence of Zermelo-Fraenkel Set Theory is
unlikely to terminate before the million dollar prize has become
worthless due to inflation.) So general predicate logic is unsuitable
for a logic programming language.

As in the propositional case, we restrict to definite clause logic.

Definite clauses in predicate logic

A definite clause is a formula of one of the two shapes below

B (a fact)

A1 ∧ · · · ∧ Ak → B (a rule)

where A1, . . . ,Ak ,B are all atomic formulas, that is, formulas of
the simple form p(t1, . . . , tn) where p is a predicate symbol.

A logic program is a list F1, . . . ,Fn of definite clauses

The clauses in the program F1, . . . ,Fn are understood as implicitly
as universally quantified closed formulas

∀Vars(F1).F1, . . . , ∀Vars(Fn).Fn

Goals in definite clause logic

A goal is a list G1, . . . ,Gm of atomic formulas.

The job of the system is to ascertain whether the logical
consequence below holds.

∀Vars(F1).F1, . . . ,∀Vars(Fn).Fn |= ∃Vars(G1, . . . ,Gm).G1∧· · ·∧Gm .

The atomic formulas in the query G1, . . . ,Gn are thus understood
as implicitly existentially quantified

Example: The goal list reflection(S,T), symmetric(T)

is understood as the existentially quantified closed formula

∃ S,T. reflection(S,T) ∧ symmetric(T)

In fact the system does more that ascertain that

∃Vars(G1, . . . ,Gm).G1 ∧ · · · ∧ Gm

is a logical consequence of the theory.

The system finds a substitution (of terms for variables) which
supplies witnesses for the existentially quantified variables..

This is once again achieved by a top-down proof search procedure,
which will be the topic of the next lecture.

Examples

It is a logical consequence of our example program that:

∃ T. symmetric(T)

In particular, it is a consequence that symmetric(leaf).

However, it is not a logical consequence that

∃ T.¬symmetric(T)

Because, S2 is a model of the program and:

S2 |= ∀ T. symmetric(T)

So not every sentence that is true in our “intended model” S1 is a
logical consequence of our theory.

Prospectus

Because of the use of negation, ∃ T.¬symmetric(T) is not a
legitimate query in definite-clause logic.

For a definite clause goal G1, . . . ,Gm (in our example language for
trees) it is the case that ∃Vars(G1, . . . ,Gm).G1 ∧ · · · ∧ Gm is a
logical consequence of the example program if and only if it is true
in the intended model S1.

In general, we shall see (Lecture 6) that every definite clause
theory has an “intended model”, its minimum Herbrand model,
and that a definite-clause query is a logical consequence of the
theory if and only if it is true in this model.

Main points today

predicate logic terms and formulas

structures and the satisfaction relation

logical consequence for predicate logic

notion of model

definite clauses, programs and goals

