Logic Programming

Lecture 9: Constraint logic programming

Outline for today

- Infix operators/declarations
- Logic programming with **constraints**
 - Finite domain constraints
 - Real/rational constraints
- Course review outline

James Cheney

Logic Programming

November 20, 2014

Infix operators

• Syntax of Prolog has many **built-in** infix operators

+ - * / = is =..

- You can also define your own prefix, infix, or postfix operators
 - Syntax and meaning are defined independently

Defining your own operators

- :- op(Prec, Fixity, Op).
- Prec is precedence higher is weaker binding
- Fixity is
 - xfx, xfy, yfx infix (non, right, left assoc)
 - fx, fy-prefix
 - xf, yf postfix
 - x, y indicate associativity (x needs explicit parentheses)
- Op can be an atom or list of atoms

Looking under the hood (bonnet?)

- Standard Prolog ops declared as:
 - :- op(1200, xfx, [:-, -->]). :- op(1100, xfy, [;]). :- op(1000, xfy, [',']). :- op(700, xfx, [=, is, ...]). :- op(500, yfx, [+, -]). :- op(500, fx, [+, -]).
- James Cheney

Logic Programming

More problems with this

- Using is/2 for arithmetic, sometimes we have to commit to ground values too early
- Leads to higher branching factor
- Also imposes order of evaluation on programs that use arithmetic
 - making programs less readable or reusable

Remember

• Prolog supports arithmetic, but it's not very "logical"

?- 2+2 = 4. no ?- X is 1+2. X = 3 ?- 1+2 is X. Instantiation error...

James Cheney

Logic Programming

November 20, 2014

Example

between(Low,_,Low).
between(Low,High,N) : Low < High,
 Next is Low + 1,
 between(Next, High, N).
?- between(1,1000,N), N > 999.
?- N > 999, between(1,1000,N).

November 20, 2014

Constraint Programming

• Why can't we just say things like

 $Y = X + 1 = 5 * Y, \quad Y = 1.$

• and have the system "solve for X"?

X = 4

- **Constraint Programming** is a wellstudied framework that lets us do this
 - (Example: Linear Programming)

```
James Cheney
```

Logic Programming

November 20, 2014

Constraint **Logic** Programming

- Constraint Programming is powerful and declarative
- But it can be a pain to use
 - Have to put problem in a specific syntactic form
- Wouldn't it be nicer to specify constraint problems using Prolog?
- That's Constraint Logic Programming

```
James Cheney
```

Logic Programming

November 20, 2014

Basic idea

- Expand the program "state" to include special predicates called **constraints**
 - Program can generate constraints at any time
 - Note: Equations t = u are a form of constraint.
- **Reduce** new constraint goals to normal form
 - e.g. unification for =
- **Backtrack** if collection of all constraints becomes inconsistent
- Enumerate solutions on request

Finite domain constraints

- N in i..j
 - says that N has one of finitely many values i..j
- t #= u
 - equality constraint
- t #< u, t #> u, etc.
 - inequality constraint
- These predicates **constrain** but don't **generate or require values**

between revisited

ames Cheney	Logic Programming

labeling/2

- First argument a list of options ([] for now)
- Second argument a list of constrained variables
- Enumerates all solutions, using options to control search.
 - ?- X in 0..3, Y in 0..3,
 - X # < Y, labeling([],[X,Y]).

November 20, 2014

indomain/1

Generates solutions to constraints			
?- X in 15, Y #= 2*X+1, indomain(Y).			
X = 1, Y = 3 ? ;			
X = 2, Y = 5 ? ;			
X = 3, Y = 7 ? ;			
X = 4, Y = 9?;			
X = 5, Y = 11 ? ;			

James Cheney

Logic Programming

November 20, 2014

minimize/2, maximize/2

• Given a goal G, find min or max value of constrained var Y after running G

Y #= (X - 50) * X,

minimize(indomain(Y), Y).

$$X = 25, Y = -625$$

Distinctness

- We also have **inequality** constraints:
- X #\= Y
 - says X and Y have to be different (both may be nonground)
- and **distinctness** constraints:
 - all_different([X₁,...,X_n])
 - forces all elements of list to be different

James Cheney

Logic Programming

November 20, 2014

Traditional solution

solve_money([S,E,N,D],

[M,O,R,E],

[M,O,N,E,Y]) :-

between(0,9,S), ..., between(0,9,Y),

distinct([S,E,N,D,M,O,R,Y]),

add_carry([0,S,E,N,D],

[0,M,O,R,E],

[M,O,N,E,Y], 0).

SEND	Goal:
	Find distinct numbers
T MORE	S,E,N,D,M,O,R,Y
	between 0 and 9
MONEY	such that
	the numbers formed by
	SEND and MORE
	add up to MONEY

James Cheney

Logic Programming

November 20, 2014

Traditional solution

```
add_carry([],[],[],0).
add_carry([A|As],[B|Bs],[C|Cs],Carry) :-
add_carry(As,Bs,Cs,NextCarry),
C is (A + B + NextCarry) mod 10,
Carry is (A + B + NextCarry) / 10.
distinct([]).
distinct([X|Xs]) :- \+(member(X,Xs)),
distinct(Xs).
```

```
James Cheney
```

CLP(FD) solution

solve_money2([S,E,N,D],
 [M,O,R,E],

[M,O,N,E,Y]) :-

S in 0...9, ..., Y in 0...9,

all_different([S,E,N,D,M,O,R,Y]),

add_carry2([0,S,E,N,D],

[0,M,O,R,E],

[M,O,N,E,Y], 0),

labeling([],[S,E,N,D,M,O,R,Y]).

James Cheney

Logic Programming

Other constraint domains

- Real numbers: CLP(R)
 - $?- \{ 2*X+Y = < 16, X+2*Y = < 11,$
 - $X+3*Y = < 15, Z = 30*X+50*Y \},$

maximize(Z).

- X = 7.0, Y = 2.0, Z = 310.0
- Rational numbers: CLP(Q)

CLP(FD) solution

add_carry2([],[],[],0).
add_carry2([A|As],[B|Bs],[C|Cs],Carry) : add_carry2(As,Bs,Cs,NextCarry),
 C #= (A + B + NextCarry) mod 10,
 Carry #= (A + B + NextCarry) / 10.

Note: Almost the same except for use of constraints.

James Cheney

Logic Programming

November 20, 2014

Using CLP

- Provided as SICSTUS libraries
 - [library(clpfd)].
 - [library(clpr)].
 - [library(clpq)].

November 20, 2014

Note:Weird SICSTUSism

?- X is 3/2. % exact division

X = 1.5

?- X is 3//2. % integer division

X = 1

?- X #= 3/2. % FD-constraint integer division

X = 1

```
?- X #= 3//2. % error!
```

Domain error....

James Cheney

Logic Programming

Review

- Material covered in LPN, ch. 7-11:
 - Definite clause grammars
 - Difference lists
 - Nonlogical features ("is", cut, negation, assert/retract)
 - Collecting solutions (findall, bagof, setof)
 - Term manipulation (var, =.., functor, arg, call)
- Expect ability to explain concepts & use in simple Prolog programs

November 20, 2014

Review

- Material covered in LPN, ch. I-6:
 - Terms, variables, unification (+/- occurs check)
 - Arithmetic expressions/evaluation
 - Recursion, avoiding nontermination
 - Programming with lists and terms
- Expect ability to solve problems similar to those in tutorial programming exercises (or textbook exercises)

James Cheney

Logic Programming

November 20, 2014

Review

- Advanced topics (Bratko ch. 11-12, 14, 23)
 - Search techniques (DFS, BFS)
 - Symbolic programming & meta-programming
 - Constraint logic programming
- Expect understanding of basic ideas
 - not ability to write large programs from scratch under time pressure

Some exam info

- Programming exam: 2 hours
 - DICE machine with SICSTUS Prolog available
 - (Documentation won't be, but exam will not rely on memorizing obscure details)
- Sample exams on course web page
- Exams from >1 year ago are on ITO web page; questions similar but different format.

Logic Programming

November 20, 2014

Learning more

- There is a lot more to logic programming
 - Books: "The Art of Prolog", Sterling & Shapiro, MIT Press
 - Online: comp.lang.prolog
 - Association for Logic Programming
 - Main journal: Theory and Practice of Logic Programming (CUP) main journal before 2001 was Journal of Logic Programming
 - Main conferences:
 - International Conference on Logic Programming (ICLP) main annual conference.
 - Principles and Practice of Declarative Programming (PPDP) covers LP and other "declarative" paradigms
- Honors/MSc projects? Let me know

James	Cheney
-------	--------

Logic Programming

November 20, 2014