
Logic Programming

Lecture 7: Search Strategies:
Problem representations

Depth-first, breadth-first, and AND/OR search

James Cheney Logic Programming November 3, 2014

Outline for today

• Problem representation

• Depth-First Search

• Iterative Deepening

• Breadth-First Search

• AND/OR (alternating/game tree) search

James Cheney Logic Programming November 3, 2014

Search problems

• Many classical (AI/CS) problems can be
formulated as search problems

• Examples:

• Graph searching

• Blocks world

• Missionaries and cannibals

• Planning (e.g. robotics)

James Cheney Logic Programming November 3, 2014

Search spaces

• Set of states s1,s2,...

• Goal predicate goal(X)

• Step predicate s(X,Y) that says we can
go from state X to state Y

• A solution is a path leading from some
start state S to a goal state G satisfying
goal(G).

James Cheney Logic Programming November 3, 2014

Example: Blocks world

A

B

C

[[c,b,a],[],[]]

James Cheney Logic Programming November 3, 2014

Example: Blocks world

A

B

C

[[b,a],[],[c]]

James Cheney Logic Programming November 3, 2014

Example: Blocks world

A B C

[[a],[b],[c]]

James Cheney Logic Programming November 3, 2014

Example: Blocks world

A

B C

[[],[a,b],[c]]

James Cheney Logic Programming November 3, 2014

Representation in Prolog

• State is a list of stacks of blocks.

[[a,b,c],[],[]]

• Transitions move a block from the top of one stack to
the top of another

s([[A|As],Bs,Cs], [As,[A|Bs],Cs]).

s([[A|As],Bs,Cs], [As,Bs,[A|Cs]]).

...

goal([[],[],[a,b,c]]).

James Cheney Logic Programming November 3, 2014

An abstract problem
space

c

b

a

d

f(d)

f(g(d))

f(g(g(d)))

...

s(a,b).
s(b,c).
s(c,a).
s(c,f(d)).
s(f(N),f(g(N))).
s(f(g(X)),X).

goal(d).
g(d)

James Cheney Logic Programming November 3, 2014

Depth-first search

•dfs(Node,Path)

• Path is a path to a goal starting from Node

dfs(S,[S]) :- goal(S).

dfs(S,[S|P]) :- s(S,T),

 dfs(T,P).

• This should look familiar

James Cheney Logic Programming November 3, 2014

Problem 1: Cycles

A

B

C

James Cheney Logic Programming November 3, 2014

Problem 1: Cycles

A

B

C

James Cheney Logic Programming November 3, 2014

Problem 1: Cycles

A

B

C

James Cheney Logic Programming November 3, 2014

Solution 1: Remember
where you've been

• Avoid cycles by avoiding previously visited states

dfs_noloop(Path,Node,[Node|Path]) :-

 goal(Node).

dfs_noloop(Path,Node,Path1) :-

 s(Node,Node1),

! \+(member(Node1,Path)),

! dfs_noloop([Node|Path],Node1,Path1).

James Cheney Logic Programming November 3, 2014

Problem 2: Infinite state
space

• DFS has similar problems to Prolog proof search

• We may miss solutions because state space is infinite

• Even if state space is finite, may wind up finding
"easy" solution only after a long exploration of
pointless part of search space

...

James Cheney Logic Programming November 3, 2014

Solution 2:
Depth bounding

• Keep track of depth, stop if bound exceeded

• Note: does not avoid loops (can do this too)

dfs_bound(_,Node,[Node]) :-

 goal(Node).

dfs_bound(N,Node,[Node|Path]) :-

 N > 0,

 s(Node,Node1),

 M is N-1,

 dfs_bound(M,Node1,Path).

James Cheney Logic Programming November 3, 2014

Problem 3: What is a
good bound?

• Don't know this in advance, in general

• Too low?

• Might miss solutions

• Too high?

• Might spend a long time searching pointlessly

James Cheney Logic Programming November 3, 2014

Solution 3: Iterative
deepening

dfs_id(N,Node,Path) :-

 dfs_bound(N,Node,Path)

 ;

 M is N+1,

 dfs_id(M,Node,Path).

James Cheney Logic Programming November 3, 2014

Breadth-first search
• Keep track of all possible solutions, try shortest ones first

• Maintain a "queue" of solutions

bfs([[Node|Path]|_], [Node|Path]) :-

 goal(Node).

bfs([Path|Paths], S) :-

! extend(Path,NewPaths),

! append(Paths,NewPaths,Paths1),

! bfs(Paths1,S).

bfs_start(N,P) :- bfs([[N]],P).

James Cheney Logic Programming November 3, 2014

Extending paths
extend([Node|Path],NewPaths) :-

! bagof([NewNode,Node|Path],

! (s(Node,NewNode),

! \+ (member(NewNode,[Node|Path]))),

! NewPaths),

! !.

%% if there are no next steps,

%% bagof will fail and we'll fall through.

extend(_Path,[]).

James Cheney Logic Programming November 3, 2014

Problem: Speed

• Concatenating new paths to end of list is
slow

• Avoid this using difference lists?

• Will revisit next week

James Cheney Logic Programming November 3, 2014

AND/OR search

• So far we've considered graph search
problems

• Just want to find some path from start to end

• Other problems have more structure

• e.g. 2-player games

• AND/OR search is a useful abstraction

James Cheney Logic Programming November 3, 2014

AND/OR search

• Search space has 2 kinds of states:

• OR: "we get to choose next state"

• AND: "opponent gets to choose"

• we need to be able to handle any opponent
move

James Cheney Logic Programming November 3, 2014

Example: Tic tac toe

x x x

x

...

......

James Cheney Logic Programming November 3, 2014

Representation
• or(S,Nodes)

• S is an OR node with possible next states Nodes

• "Our move"

• and(S,Nodes)

• S is an AND node with possible next states Nodes

• "Opponent moves"

• goal(S)

• S is a "win" for us

James Cheney Logic Programming November 3, 2014

Example: A simple game

a

b c

d e

and(a,[b,c]).
or(b,[d,a]).
or(c,[d,e]).

goal(e).

James Cheney Logic Programming November 3, 2014

Basic idea
andor(Node) :- goal(Node).

andor(Node) :-

! or(Node,Nodes),

! member(Node1,Nodes),

! andor(Node1).

andor(Node) :-

! and(Node,Nodes),

! solveall(Nodes).

James Cheney Logic Programming November 3, 2014

Solutions
• For each AND state, we need solutions for all

possible next states

• For each OR state, we just need one choice

• A "solution" is thus a tree, or strategy

• Can adapt previous program to produce solution tree.

• Can also incorporate iterative deepening, loop
avoidance, BFS

• heuristic measures of "good" positions - min/max

James Cheney Logic Programming November 3, 2014

• Further reading:

• Bratko, Prolog Programming for Artificial
Intelligence

• ch. 8 (difference lists), ch. 11 (DFS/BFS)

• also Ch. 12 (BestFS), 13 (AND/OR)

• Next time:

• Higher-order logic programming

