Logic Programming

Lecture 6:
Parsing, Difference Lists and Definite Clause Grammars

Context Free Grammars

® A simple context free grammar
S — NP VP
NP — DET N
VP — VI | VT NP
DET — the
N — cat | dog | food
VI — meows | barks

VT — bites | eats

® Context Free Grammars (review)

Outline for today

® Parsing in Prolog

® Definite Clause Grammars

Logic Programming

October 20,2014

Recognizing grammatical

sentences

® Yes:

"the cat meows'

® "the cat bites the dog"

® "the dog eats the food"

e No:

"cat the cat cat"

® "dog bites meows"

James Cheney Logic Programming October 20,2014

James Cheney

Logic Programming

October 20,2014

Generation example Generation example

S — NP VP S — NP VP o
NP — DET N

NP — DET N

VP — VI | VT NP VP — VI | VT NP @ °
DET — the

DET — the

N — cat | dog | food N — cat | dog | food
VI — meows | barks VI — meows | barks
VI — bites | eats VT — bites | eats
James Cheney Logic Programming October 20,2014 James Cheney Logic Programming October 20,2014

Generation example Generation example

S — NP VP o S — NP VP o
NP — DET N

NP — DET N

VP — VI | VT NP @ @ VP — VI | VT NP @ °
DET — the

DET — the
N — cat | dog | food @ o N — cat | dog | food @ o
VI — meows | barks VI — meows | barks

VI — bites | eats VT — bites | eats

the

James Cheney Logic Programming October 20,2014 James Cheney Logic Programming October 20,2014

Generation example Generation example

An even simpler
context-free grammar

T — C T - a Tb

o ® In Prolog:
e CYERCY t(rel).
N — cat | dog | food o o t(S) - t(S1l),
VI — meows | barks

. : :

append([a],S1,S2),

Generation example

S NP VP

N
—
-

N

append(S2,[b],S).

Using append to parse

S(L) c - np(Ll), Vp(LZ), append(L1,L2,L).
np(L) M det(Ll), n(LZ), append(L1,L2,L).
vp(L) t- vi(L) ;

vt(Ll), np(L2), append(ri,r2,1).
det([the]). det([a]).
n([cat]). n([dog]). n([food]).
vi([meows]). vi([barks]).

vt([bites]). vt([eats]).

A better way?

® Obviously, need to guess when we're

generating

® But we also guess when we're parsing
known sequence

® This is inefficient (lots of backtracking!)

® Reordering goals doesn't help much.

James Cheney Logic Programming October 20,2014

An idea:
Accumulators

® Want to use input data to guide search
® Parse using two parameters L , M

® such that M is a suffix of L
® L = list "before" parsing item

® M = "remainder" of list after parsing item

James Cheney Logic Programming October 20,2014

An even simpler context-
free grammar (mark Il)

T — C T - aTb

® |n Prolog, using accumulators:
t([c|L],L).
t([a|Ll],M) :- t(L1l,[b|M]).

James Cheney Logic Programming October 20,2014

James Cheney Logic Programming October 20,2014

Using accumulator

. Difference lists
version

?— t(L,[])- ® A difference list is a pair (t,X) where
L = [c]. e tisalistterm [t1,...,tn|X]
® X is a variable
L =[a,c,b].
® Empty difference list: (X, X)
L = [a,a,c,b,b].

e Constant difference list: ([a1, .. .,an|X],X)
® Appending difference lists (t,X) and (u,Y):

® Simply unify X and u! Yields (t[u/X],Y)

James Cheney Logic Programming October 20,2014 James Cheney Logic Programming October 20,2014

An even simpler context- Definite clause
free grammar (mark lll) grammars

T — ¢ T — a T b ® Parsing using difference lists is so useful that Prolog has
built-in syntax for it:
® |n Prolog, using difference lists: s --> [c].

t(L,M) :- L = [c|M]. s --> [al, S, [b].

® translates to:

t(L,M) :-= L = [a|Ll],

s(L,M) := L = [c|M].

t(Ll,M1), s(L,M) :- L = [a[Ll],
s(L1,M1),

M1 = [b|M]. ut - (bln).

James Cheney Logic Programming October 20,2014 James Cheney Logic Programming October 20,2014

DCG syntax

® Rules of form nonterm --> body

® Body terms are:

® terminal lists [t;,...,ts] (maybe [])
® nonterminals s, t,u, ...
® sequential composition body;, body:

e alternative choice body; ; body:

Using DCG version

* DCGs translated to difference list implementation

* So they are used the same way:

= t(L,[])-

L =

L =

[c]-
[a,c,b].

= [a,a,c,b,b].

Cheney Logic Programming October 20,2014

Using DCG version (ll)

Can also use built-ins phrase/2, phrase/3
?- phrase(t,L,M).

L = [c|M].

L = [a,c,b|M].

?- phrase(t,L).

L = [c].

L = [a,c,b].

Logic Programming

October 20,2014

Large example revisited

S --> np, Vp.

np --> det, n.

vp --> vi ; vt, np.

det --> [the] ; [a].

n --> [cat] ; [dog] ; [food].
vi --> [meows] ; [barks].

vt --> [bites] ; [eats].

Cheney Logic Programming October 20,2014

Logic Programming

October 20,2014

DCGs with tests

DCG clause bodies can also contain tests:

® {pred} where predis an arbitrary Prolog
goal

Example:
n --> [Word], {noun(Word)}.
noun(dog). noun(cat).

noun(food).

DCGs and recursion

Left recursion (as usual) leads to
nontermination:

exp --> exp,[t],exp.
Avoid by using right recursion & fallthrough:
exp --> simple exp,[+],exp.

exp --> simple exp.

Cheney Logic Programming October 20,2014

DCGs with parameters

Nonterminals in DCGs can have parameters.
t(0) --> [c].
t(succ(N)) --> [a], t(N), [b]'

Keeps track of depth of nesting.

Cheney Logic Programming October 20,2014

DCGs + parameters
> CFGs

With parameters we can parse non-CFGs:
u(N) --> n(N,a),

n(N,b),

n(N,c).
n(0,x) -->11.

n(succ(N),X) --> [X], n(N,X).

Cheney Logic Programming October 20,2014

Cheney Logic Programming October 20,2014

Parsing with parse trees

® "the cat meows" ® Further reading:

® S (NP (DET (the), N(cat)),VP (VI (meows)) ® LPN, ch.7-8 - more difference list examples

, and translation to Prolo
® "the cat bites the dog" &

° .
e S(NP (DET (the), N(cat),VP (VT (bites), Next time:

NP(DET(the), N(dog))) ® Search techniques
® Can build parse trees using parameters ® depth-first, iterative deepening, breadth-first,
best-first

® | ook for this in a tutorial exercise...

James Cheney Logic Programming October 20,2014 James Cheney Logic Programming October 20,2014

