
Logic Programming

Lecture 5:
Nonlogical features, continued:

negation-as-failure, collecting solutions, assert/retract

James Cheney Logic Programming October 9, 2014

Outline for today

• Nonlogical features continued

• Negation-as-failure

• Collecting solutions (findall, setof, bagof)

• Assert/retract

James Cheney Logic Programming October 9, 2014

Negation-as-failure

• We can use cut to define negation-as-failure

• recall Tutorial #1

not(G) :- G, !, fail ; true.

• This tries to solve G

• If successful, fail

• Otherwise, succeed

James Cheney Logic Programming October 9, 2014

How it works
not(member(1,[2,1])

James Cheney Logic Programming October 9, 2014

true

How it works

member(1,[2,1]), !, fail.

not(member(1,[2,1])

done

James Cheney Logic Programming October 9, 2014

true

How it works

member(1,[2,1]), !, fail.

member(1,[1]), !, fail.

(X = 1, L = [1])

not(member(1,[2,1])

done

James Cheney Logic Programming October 9, 2014

true

How it works

member(1,[2,1]), !, fail.

member(1,[1]), !, fail.

(X=1)

(X = 1, L = [1])

not(member(1,[2,1])

done

James Cheney Logic Programming October 9, 2014

How it works

member(1,[2,1]), !, fail.

member(1,[1]), !, fail.

(X=1)

(X = 1, L = [1])

not(member(1,[2,1])

James Cheney Logic Programming October 9, 2014

How it works

member(1,[2,1]), !, fail.

member(1,[1]), !, fail.

(X=1)

(X = 1, L = [1])

not(member(1,[2,1])

fail

James Cheney Logic Programming October 9, 2014

How it works

member(1,[2,1]), !, fail.

member(1,[1]), !, fail.

(X=1)

(X = 1, L = [1])

not(member(1,[2,1])

fail

James Cheney Logic Programming October 9, 2014

How it works
not(member(5,[2,1])

James Cheney Logic Programming October 9, 2014

true

How it works

member(5,[2,1]), !, fail.

not(member(5,[2,1])

James Cheney Logic Programming October 9, 2014

true

How it works

member(5,[2,1]), !, fail.

member(5,[1]), !, fail.

not(member(5,[2,1])

James Cheney Logic Programming October 9, 2014

true

How it works

member(5,[2,1]), !, fail.

member(5,[1]), !, fail.

not(member(5,[2,1])

member(5,[]), !, fail.

James Cheney Logic Programming October 9, 2014

true

How it works

member(5,[2,1]), !, fail.

member(5,[1]), !, fail.

not(member(5,[2,1])

member(5,[]), !, fail.

James Cheney Logic Programming October 9, 2014

true

How it works

member(5,[2,1]), !, fail.

member(5,[1]), !, fail.

not(member(5,[2,1])

member(5,[]), !, fail.

James Cheney Logic Programming October 9, 2014

true

How it works

member(5,[2,1]), !, fail.

member(5,[1]), !, fail.

not(member(5,[2,1])

done

member(5,[]), !, fail.

James Cheney Logic Programming October 9, 2014

Negation-as-failure

• Built-in syntax: \+(G)

• Example: people that are not teachers

q(X) :- person(X),

 \+(teaches(X,Y)).

James Cheney Logic Programming October 9, 2014

Behavior

person(a).
person(b).

teaches(a,b).

q(X)

q(X) :- person(X),

 \+(teaches(X,Y)).

James Cheney Logic Programming October 9, 2014

Behavior

person(a).
person(b).

teaches(a,b).

q(X)

person(X), \+(teaches(X,Y))

q(X) :- person(X),

 \+(teaches(X,Y)).

James Cheney Logic Programming October 9, 2014

Behavior

person(a).
person(b).

teaches(a,b).

q(X)

person(X), \+(teaches(X,Y))

X = a

\+(teaches(a,Y))

q(X) :- person(X),

 \+(teaches(X,Y)).

James Cheney Logic Programming October 9, 2014

Behavior

person(a).
person(b).

teaches(a,b).

q(X)

person(X), \+(teaches(X,Y))

X = a

\+(teaches(a,Y))

teaches(a,Y)

q(X) :- person(X),

 \+(teaches(X,Y)).

James Cheney Logic Programming October 9, 2014

Behavior

person(a).
person(b).

teaches(a,b).

q(X)

done

person(X), \+(teaches(X,Y))

X = a

\+(teaches(a,Y))

teaches(a,Y)

q(X) :- person(X),

 \+(teaches(X,Y)).

Y= b

James Cheney Logic Programming October 9, 2014

Behavior

person(a).
person(b).

teaches(a,b).

q(X)

done

person(X), \+(teaches(X,Y))

X = a

\+(teaches(a,Y))

teaches(a,Y)

q(X) :- person(X),

 \+(teaches(X,Y)).

Y= b

James Cheney Logic Programming October 9, 2014

Behavior

person(a).
person(b).

teaches(a,b).

q(X)

done

person(X), \+(teaches(X,Y))

X = a X = b

\+(teaches(a,Y))

teaches(a,Y)

\+(teaches(b,Y))

q(X) :- person(X),

 \+(teaches(X,Y)).

Y= b

James Cheney Logic Programming October 9, 2014

Behavior

person(a).
person(b).

teaches(a,b).

q(X)

done

person(X), \+(teaches(X,Y))

X = a X = b

\+(teaches(a,Y))

teaches(a,Y)

\+(teaches(b,Y))

teaches(b,Y')

q(X) :- person(X),

 \+(teaches(X,Y)).

Y= b

James Cheney Logic Programming October 9, 2014

Behavior

person(a).
person(b).

teaches(a,b).

q(X)

done

person(X), \+(teaches(X,Y))

X = a X = b

\+(teaches(a,Y))

teaches(a,Y)

\+(teaches(b,Y))

teaches(b,Y')

q(X) :- person(X),

 \+(teaches(X,Y)).

Y= b

James Cheney Logic Programming October 9, 2014

Behavior

person(a).
person(b).

teaches(a,b).

q(X)

done

person(X), \+(teaches(X,Y))

X = a X = b

\+(teaches(a,Y))

teaches(a,Y)

done

\+(teaches(b,Y))

teaches(b,Y')

q(X) :- person(X),

 \+(teaches(X,Y)).

Y= b

James Cheney Logic Programming October 9, 2014

Behavior

person(a).
person(b).

teaches(a,b).

q(X)

q(X) :- \+(teaches(X,Y)),

 person(X).

James Cheney Logic Programming October 9, 2014

Behavior

person(a).
person(b).

teaches(a,b).

q(X)

\+(teaches(X,Y)),person(X)

q(X) :- \+(teaches(X,Y)),

 person(X).

James Cheney Logic Programming October 9, 2014

Behavior

person(a).
person(b).

teaches(a,b).

q(X)

\+(teaches(X,Y)),person(X)

person(X)

q(X) :- \+(teaches(X,Y)),

 person(X).

teaches(X,Y)

James Cheney Logic Programming October 9, 2014

X = a
Y = b

Behavior

person(a).
person(b).

teaches(a,b).

q(X)

done

\+(teaches(X,Y)),person(X)

person(X)

q(X) :- \+(teaches(X,Y)),

 person(X).

teaches(X,Y)

James Cheney Logic Programming October 9, 2014

X = a
Y = b

Behavior

person(a).
person(b).

teaches(a,b).

q(X)

done

\+(teaches(X,Y)),person(X)

person(X)

q(X) :- \+(teaches(X,Y)),

 person(X).

teaches(X,Y)

James Cheney Logic Programming October 9, 2014

Searching a graph
find(X,X).

find(X,Z) :- edge(X,Y),

 find(Y,Z).

• Problem: Loops easily if graph is cyclic:

edge(a,b).

edge(b,c).

edge(c,a).

James Cheney Logic Programming October 9, 2014

Searching a graph (2)
• To avoid looping:

1. Remember where we have been

2. Stop if we try to visit a node we've already seen.

find2(X,X,_).

find2(X,Z,P) :- \+(member(X,P)),

 edge(X,Y),

 find2(Y,Z,[X|P]).

Note: Needs mode (+,?,+).

James Cheney Logic Programming October 9, 2014

Safe use of negation-as-
failure

• As with cut, negation-as-failure can have
non-logical behavior

• Goal order matters

• \+(X = Y), X = a, Y = b

• fails

• X = a, Y = b, \+(X = Y)

• succeeds

James Cheney Logic Programming October 9, 2014

Safe use of negation as
failure (2)

• Can read \+(G) as "not G" only if G is
ground when we start solving it

• Any free variables "existentially quantified"

•\+(1=2) == 1 ≠ 2

•\+(X=Y) == ∃ X, Y. X ≠ Y

• General heuristic: delay negation after
other goals to make negated goals ground

James Cheney Logic Programming October 9, 2014

Collecting solutions
• We'd like to find all solutions

• collected as an explicit list

• alist(bart,X) = "X lists the ancestors of
bart"

• Can't do this in pure Prolog

• cut doesn't help

• Technically possible (but painful) using assert/
retract

James Cheney Logic Programming October 9, 2014

Collecting solutions,
declaratively

James Cheney Logic Programming October 9, 2014

Collecting solutions,
declaratively

• Built-in predicate to do same thing:

• findall/3 - list of solutions

James Cheney Logic Programming October 9, 2014

Collecting solutions,
declaratively

• Built-in predicate to do same thing:

• findall/3 - list of solutions

?- findall(Y,ancestor(Y,bart),L).

L = [homer,marge,abe,jacqueline]

James Cheney Logic Programming October 9, 2014

Collecting solutions,
declaratively

• Built-in predicate to do same thing:

• findall/3 - list of solutions

?- findall(Y,ancestor(Y,bart),L).

L = [homer,marge,abe,jacqueline]

?- findall((X,Y),ancestor(X,Y),L).

L = [(abe,homer),(homer,bart),
(homer,lisa),(homer,maggie)|...]

James Cheney Logic Programming October 9, 2014

findall/3
• Usage:

findall(?X, ?Goal, ?List)

• On success, List is list of all substitutions
for X that make Goal succeed.

• Goal can have free variables!

• X treated as "bound" in G

• (X could also be a "pattern"...)

James Cheney Logic Programming October 9, 2014

bagof/3

James Cheney Logic Programming October 9, 2014

• bagof/3 - list of solutions

?- bagof(Y,ancestor(Y,bart),L).

L = [homer,marge,abe,jacqueline]

bagof/3

James Cheney Logic Programming October 9, 2014

• bagof/3 - list of solutions

?- bagof(Y,ancestor(Y,bart),L).

L = [homer,marge,abe,jacqueline]

• different instantiations of free variables lead to different answers

| ?- bagof(Y,ancestor(Y,X),L).

L = [homer,marge,abe,jacqueline],

X = bart ? ;

bagof/3

James Cheney Logic Programming October 9, 2014

• bagof/3 - list of solutions

?- bagof(Y,ancestor(Y,bart),L).

L = [homer,marge,abe,jacqueline]

• different instantiations of free variables lead to different answers

| ?- bagof(Y,ancestor(Y,X),L).

L = [homer,marge,abe,jacqueline],

X = bart ? ;

L = [abe],

X = homer ? ...

bagof/3

James Cheney Logic Programming October 9, 2014

Quantification
• In goal part of a bagof/3, we can write:

X^G(X)

to "hide" (existentially quantify) X.

| ?- bagof(Y,X^ancestor(X,Y),L).

L = [homer,bart,lisa,maggie,rod,

 todd,ralph,bart,lisa,maggie|...]

• This also works for findall/3, but is redundant

James Cheney Logic Programming October 9, 2014

setof/3

James Cheney Logic Programming October 9, 2014

setof/3
• Similar to bagof/3, but sorts and eliminates

duplicates

| ?- bagof(Y,X^ancestor(X,Y),L).

L = [homer,bart,lisa,maggie,rod,

 todd,ralph,bart,lisa,maggie|...]

James Cheney Logic Programming October 9, 2014

setof/3
• Similar to bagof/3, but sorts and eliminates

duplicates

| ?- bagof(Y,X^ancestor(X,Y),L).

L = [homer,bart,lisa,maggie,rod,

 todd,ralph,bart,lisa,maggie|...]

| ?- setof(Y,X^ancestor(X,Y),L).

L = [bart,homer,lisa,maggie,marge,

 patty,ralph,rod,selma,todd]

James Cheney Logic Programming October 9, 2014

Assert and retract

• So far we have statically defined facts
and rules

• usually in separate file

• We can also dynamically add and
remove clauses

James Cheney Logic Programming October 9, 2014

assert/1

James Cheney Logic Programming October 9, 2014

assert/1
?- assert(p).

yes

James Cheney Logic Programming October 9, 2014

assert/1
?- assert(p).

yes

?- p.

yes

James Cheney Logic Programming October 9, 2014

assert/1
?- assert(p).

yes

?- p.

yes

?- assert(q(1)).

yes

James Cheney Logic Programming October 9, 2014

assert/1
?- assert(p).

yes

?- p.

yes

?- assert(q(1)).

yes

?- q(X).

X = 1.

James Cheney Logic Programming October 9, 2014

Searching a graph using
assert/1

:- dynamic v/1.

find3(X,X).

find3(X,Z) :- \+(v(X)),

 assert(v(X)),

 edge(X,Y),

 find3(Y,Z).

• Mode (+,?).

• Problem: Need to clean up afterwards.

James Cheney Logic Programming October 9, 2014

Fibonacci
fib(0,0).

fib(1,1).

fib(N,K) :- N >= 2,

 M is N-1, fib(M,F),

 P is M-1, fib(P,G),

 K is F+G.

James Cheney Logic Programming October 9, 2014

Fibonacci, memoized
:- dynamic memofib/2.

fib(N,K) :- memofib(N,K), !.

...

fib(N,K) :- N >= 2,

 M is N-1, fib(M,F),

 P is M-1, fib(P,G),

 K is F+G,

 assert(memofib(N,K)).

James Cheney Logic Programming October 9, 2014

asserta/1 and
assertz/1

• Provide limited control over clause order.

• asserta/1 adds to beginning of KB

• assertz/1 adds to end of KB

James Cheney Logic Programming October 9, 2014

retract/1
?- retract(p).

yes

?- p.

no

?- retract(q(1)).

yes

?- q(X).

no

James Cheney Logic Programming October 9, 2014

Warning
• If you assert or retract an unused predicate

interactively, Sicstus Prolog assumes it is dynamic

• But if you want to use assert/retract in programs,
you should declare as dynamic in the program

• for example:

:- dynamic memofig/2.

• Generally wise to avoid assert/retract without
good reason

James Cheney Logic Programming October 9, 2014

Collecting solutions
using assert, retract

• Here's a way to calculate list of all ancestors using assert/retract:
:- dynamic p/1.

alist(X,L) :- assert(p([])),

 collect(X);

 p(L),

 retract(p(L)).

collect(X) :- ancestor(Y,X),

 retract(p(L)),

 assert(p([Y|L])),

 fail.

• Kind of a hack! (also need to clean up afterwards).

James Cheney Logic Programming October 9, 2014

• Next time: Definite Clause Grammars

• Further reading: LPN, ch. 10 & 11

