
Logic Programming

Lecture 4:
Nonlogical features:
arithmetic, I/O, cut

James Cheney Logic Programming October 2, 2014

Quick note
• Several predicates discussed so far (or today) are

built-in (sometimes with different names):

• append/3

• mem (member/2)

• len (length/2)

• It is good to know how to define them from scratch, if
necessary

• LPN text "predicate index" lists all built-in predicates
you are expected to know (and more!)

James Cheney Logic Programming October 2, 2014

Nonlogical features
• So far we've worked (mostly) in pure Prolog

• Solid logical basis

• Elegant solutions to symbolic problems

• But, many practical things become inconvenient

• Arithmetic

• I/O

• And standard proof search not always efficient

• Can we control proof search better?

James Cheney Logic Programming October 2, 2014

Outline for today

• Nonlogical features

• Expression evaluation

• I/O

• "Cut" (pruning proof search)

• Negation-as-failure

• more in 2 weeks

James Cheney Logic Programming October 2, 2014

Expression evaluation

James Cheney Logic Programming October 2, 2014

Expression evaluation
• Prolog has built-in syntax for arithmetic expressions

• But it is uninterpreted

James Cheney Logic Programming October 2, 2014

Expression evaluation
• Prolog has built-in syntax for arithmetic expressions

• But it is uninterpreted

?- 2 + 2 = 4.

no.

James Cheney Logic Programming October 2, 2014

Expression evaluation
• Prolog has built-in syntax for arithmetic expressions

• But it is uninterpreted

?- 2 + 2 = 4.

no.

?- X = 2+2.

X = 2+2

James Cheney Logic Programming October 2, 2014

Expression evaluation
• Prolog has built-in syntax for arithmetic expressions

• But it is uninterpreted

?- 2 + 2 = 4.

no.

?- X = 2+2.

X = 2+2

?- display(2+2).

+(2,2)

James Cheney Logic Programming October 2, 2014

Expression evaluation
• We could define unary arithmetic operations

add(M,N,P)

• and interpret expressions ourselves

eval(+(X,Y),V) :-

 eval(X,N), eval(Y,M), add(M,N,V).

• But this is slooooooow

• (and floating-point would be even worse...)

James Cheney Logic Programming October 2, 2014

The evaluation predicate "is"

• Prolog provides a built-in predicate "is"

?- X is 2+2.

X = 4

?- X is 6*7.

X = 42

James Cheney Logic Programming October 2, 2014

Machine arithmetic
with "is"

• addition (+), subtraction (-)

?- X is 2+(3-1).

X=4

• multiplication (*), division (/), "mod"

?- X is 42 mod 5, Y is 42 / 5.

X = 2,

Y = 8.4

James Cheney Logic Programming October 2, 2014

Warning
• Unlike "=", "is" is asymmetric

• only has mode (?,+)

?- 2+(3-1) is X.

! Instantiation error...

• requires RHS to be a ground expression

?- X is foo(bar).

! Domain error...

James Cheney Logic Programming October 2, 2014

Lists and arithmetic
• Length of a list

len([],0).

len([_|L], N) :-

 len(L,M), N is M+1.

• Only works in mode (+,?).

• Built-in length/2

• (works in both directions)

James Cheney Logic Programming October 2, 2014

Building a list of length n

• Similar to list length...

build([],0).

build([_|L], N) :-

 M is N-1, build(L,M).

• Only works in mode (?,+).

• (But see built-in length(?L,?N))

James Cheney Logic Programming October 2, 2014

Lists and arithmetic

• Summing elements of a list

sumall([],0).

sumall([X|L],S) :-

 sumall(L,M), S is M+X.

• What mode can this have?

James Cheney Logic Programming October 2, 2014

Arithmetic comparisons

• Binary relations also built-in as goals:

• less than (<), greater than (>)

• less/equal (=<), greater/equal (>=)

• equality (=:=), inequality (=/=)

• All have mode (+,+)

• both arguments must be ground!

James Cheney Logic Programming October 2, 2014

Example

• "Maximum" predicate

max(X,Y,Y) :- X =< Y.

max(X,Y,X) :- X > Y.

• Works in mode (+X,+Y,?M).

James Cheney Logic Programming October 2, 2014

Basic Input/Output
• read(?X) reads in a term (followed by ".")

• write(+X) prints out its argument as a term.

• nl/0 prints a newline

• Simple expression calculator:

calc :- read(X),

 Y is X,

 write(X = Y), nl,

 calc.

James Cheney Logic Programming October 2, 2014

Backtracking through I/O

• Short answer: can backtrack, but can't undo I/O

?- write(foo),fail; write(bar).

foobar

• Any bindings will be undone

?- read(X), fail; X = 1.

|: foo.

X = 1

James Cheney Logic Programming October 2, 2014

Cut

• Sometimes we know we've made the right
choice

• No backtracking needed

• In Pure Prolog we can't take advantage of
this

• Introducing "cut" (!), the proof-search
pruning operator

James Cheney Logic Programming October 2, 2014

Example

• The "member of a list" predicate

member(X,[X|L]).

member(X,[Y|L]) :- member(X,L).

• If X is ever found in L, it is pointless to
backtrack and keep looking for solutions

James Cheney Logic Programming October 2, 2014

Example

• The "member of a list" predicate

member(X,[X|L]) :- !.

member(X,[Y|L]) :- member(X,L).

• If X is ever found in L, it is pointless to
backtrack and keep looking for solutions

• Insert a cut in first rule to cut off search

James Cheney Logic Programming October 2, 2014

How it works

• Remember choice points (places where we
could have tried a different rule or branch).

• When we encounter a cut, "prune" all
pending alternatives since cut was
introduced

James Cheney Logic Programming October 2, 2014

How it works
member(1,[1,2,1])Without cut

R1: member(X,[X|_]).
R2: member(X,[_|L]) :- member(X,L)

James Cheney Logic Programming October 2, 2014

How it works
member(1,[1,2,1])Without cut

done

R1: member(X,[X|_]).
R2: member(X,[_|L]) :- member(X,L)

R1 (X=1)

James Cheney Logic Programming October 2, 2014

How it works
member(1,[1,2,1])

member(1,[2,1]).

Without cut

done

R1: member(X,[X|_]).
R2: member(X,[_|L]) :- member(X,L)

R1 (X=1) R2 (X = 1, L = [2,1])

James Cheney Logic Programming October 2, 2014

How it works
member(1,[1,2,1])

member(1,[2,1]).

Without cut

done

R1: member(X,[X|_]).
R2: member(X,[_|L]) :- member(X,L)

R1 (X=1)

R1

R2 (X = 1, L = [2,1])

James Cheney Logic Programming October 2, 2014

How it works
member(1,[1,2,1])

member(1,[2,1]).

Without cut

member(1,[1]).

done

R1: member(X,[X|_]).
R2: member(X,[_|L]) :- member(X,L)

R1 (X=1)

R1

R2 (X = 1, L = [2,1])

R2 (X = 1, L = [1])

James Cheney Logic Programming October 2, 2014

How it works
member(1,[1,2,1])

member(1,[2,1]).

done

Without cut

member(1,[1]).

done

R1: member(X,[X|_]).
R2: member(X,[_|L]) :- member(X,L)

R1 (X=1)

R1 (X=1)

R1

R2 (X = 1, L = [2,1])

R2 (X = 1, L = [1])

James Cheney Logic Programming October 2, 2014

How it works
member(1,[1,2,1])

member(1,[2,1]).

done

Without cut

member(1,[1]).

done

R1: member(X,[X|_]).
R2: member(X,[_|L]) :- member(X,L)

R1 (X=1)

R1 (X=1)

R1

R2 (X = 1, L = [2,1])

R2 (X = 1, L = [1])

R2

James Cheney Logic Programming October 2, 2014

How it works
member(1,[1,2,1])

member(1,[2,1]).

done

With cut

member(1,[1]).

R1: member(X,[X|_]) :- !.
R2: member(X,[_|L]) :- member(X,L)

R1 (X=1)

R1

R2 (X = 1, L = [2,1])

R2 (X = 1, L = [1])

R2

James Cheney Logic Programming October 2, 2014

How it works
member(1,[1,2,1])

member(1,[2,1]).

done

With cut

member(1,[1]).

R1: member(X,[X|_]) :- !.
R2: member(X,[_|L]) :- member(X,L)

R1 (X=1)

R1 (X=1)

R1

R2 (X = 1, L = [2,1])

R2 (X = 1, L = [1])

R2

!

James Cheney Logic Programming October 2, 2014

How it works
member(1,[1,2,1])With cut

R1: member(X,[X|_]) :- !.
R2: member(X,[_|L]) :- member(X,L)

R1 (X=1)

!

James Cheney Logic Programming October 2, 2014

How it works
member(1,[1,2,1])With cut

done

R1: member(X,[X|_]) :- !.
R2: member(X,[_|L]) :- member(X,L)

R1 (X=1)

!

James Cheney Logic Programming October 2, 2014

done done

a(X)

Another example
p(X,Y) :- q(X), r(X,Y).

p(X,X) :- a(X).

q(X) :- a(X).

r(X,Y) :- b(X), c(Y).

a(1). a(3).

b(1). b(2).

 c(2). c(3).

p(X,Y)

q(X), r(X,Y)

done

(X=1)

a(X), r(X,Y)

(X=3)

r(1,Y)

b(1),c(Y)

c(Y)
(Y=2) (Y=3)

done

(X=1) (X=3)

r(3,Y)

b(3),c(Y)

(Y=X)

James Cheney Logic Programming October 2, 2014

done done

a(X)

Another example
p(X,Y) :- q(X), !, r(X,Y).

p(X,X) :- a(X).

q(X) :- a(X).

r(X,Y) :- b(X), c(Y).

a(1). a(3).

b(1). b(2).

 c(2). c(3).

p(X,Y)

q(X), !, r(X,Y)

done

(X=1)

a(X), !, r(X,Y)

(X=3)

!,r(1,Y)

b(1),c(Y)

c(Y)
(Y=2) (Y=3)

done

(X=1) (X=3)

r(3,Y)

b(3),c(Y)

(Y=X)

James Cheney Logic Programming October 2, 2014

done done

a(X)

Another example
p(X,Y) :- q(X), r(X,Y), !.

p(X,X) :- a(X).

q(X) :- a(X).

r(X,Y) :- b(X), c(Y).

a(1). a(3).

b(1). b(2).

 c(2). c(3).

p(X,Y)

q(X), r(X,Y), !

done

(X=1)

a(X), r(X,Y), !

(X=3)

r(1,Y), !

b(1),c(Y), !

c(Y), !
(Y=2) (Y=3)

done

(X=1) (X=3)

r(3,Y)

b(3),c(Y)

(Y=X)

James Cheney Logic Programming October 2, 2014

done done

a(X)

Another example
p(X,Y) :- q(X), r(X,Y).

p(X,X) :- a(X).

q(X) :- a(X), !.

r(X,Y) :- b(X), c(Y).

a(1). a(3).

b(1). b(2).

 c(2). c(3).

p(X,Y)

q(X), r(X,Y)

done

(X=1)

a(X), !, r(X,Y)

(X=3)

!, r(1,Y)

b(1),c(Y)

c(Y)
(Y=2) (Y=3)

done

(X=1) (X=3)

r(3,Y)

b(3),c(Y)

(Y=X)

James Cheney Logic Programming October 2, 2014

done done

a(X)

Another example
p(X,Y) :- q(X), r(X,Y).

p(X,X) :- a(X).

q(X) :- a(X).

r(X,Y) :- b(X), !, c(Y).

a(1). a(3).

b(1). b(2).

 c(2). c(3).

p(X,Y)

q(X), r(X,Y)

done

(X=1)

a(X), r(X,Y)

(X=3)

r(1,Y)

b(1), !, c(Y)

c(Y)
(Y=2) (Y=3)

done

(X=1) (X=3)

r(3,Y)

b(3), !, c(Y)

(Y=X)

James Cheney Logic Programming October 2, 2014

Max
max(X,Y,Y) :- X <= Y.

max(X,Y,X) :- X > Y.

•Pointless to try to backtrack

• if the first goal succeeds, then the second won't!

James Cheney Logic Programming October 2, 2014

Max using cut
max(X,Y,Y) :- X <= Y, !.

max(X,Y,X) :- X > Y.

•Pointless to try to backtrack

• if the first goal succeeds, then the second won't!

James Cheney Logic Programming October 2, 2014

But what about...

• Isn't it silly to test X < Y in second rule?

max(X,Y,Y) :- X <= Y, !.

max(X,Y,X).

•Maybe (slightly) more efficient to skip it

• But damages transparency

• max(1,2,1) and max(1,2,2) both succeed!

• Rule order matters!

James Cheney Logic Programming October 2, 2014

Safe use of cut

• Cut can make program more efficient

• by avoiding pointless backtracking

• But as shown with "max", cuts can change
meaning of program (not just efficiency)

• "Green" cut - preserves meaning of program

• "Red" cut - doesn't.

James Cheney Logic Programming October 2, 2014

Next time

• More about cut & negation

• Further reading:

• LPN, ch. 5 & 10

