Outline for today

Logic Programming ® Quick review
® Equality and unification

o ® How Prolog searches for answers
Lecture 2: Unification and proof search

James Cheney Logic Programming September 22,2014

Quick review Infix operators

® Atoms bart ‘Mr. Burns’ ® Prolog has built-in constants and infix operators
® VariablesX Y Z ® Examples:

® Predicates p(ti,«..,tn) ® Equality:t = u (or=(t,u))

® Terms ® Pairing: (t,u) (or , (t,u))

® Facts father (homer, bart). ® Empty list: []

® Goalsp(ti, ... tn)s «evy a(ti'yee.,ta'). ® List concatenation: [X|Y] (or . (X,Y))

® Rules p(ts) :- g(ts’), ..., r(ts'’). ® You can also define your own infix operators!

James Cheney Logic Programming September 22,2014 James Cheney Logic Programming September 18,2014

General observations Terms

e Prolog is untyped ® Also have

® everything is a "term"

® Pro]og is declarative ® Numbel'SZ 1 2 3 4 2 —0 . 12 3 4 5
® "predicates” with side effects, such as print, are the exception, not ® Additional constants and infix
the rule
operators
°

Prolog does not have explicit control flow constructs (while, do)

® the search strategy allows us to simulate iteration ® More on these later.
® but this is not usually the best way to program

Therefore, try to forget what you already know from
other languages

James Cheney

Logic Programming September 18,2014 James Cheney

Logic Programming September 18,2014

Unification (1) Unification (I1)

® The equation t = u is a basic goal
® with a special meaning
® What happens if we ask:
?2- X = ¢
?- £(X,9(Y,2)) = £(c,9(X,Y))
?- £(X,9(Y,£(X))) = £(c,9(X,Y))
® And how does it do that?

James Cheney Logic Programming September 22,2014 James Cheney Logic Programming September 22,2014

Unification (l1)

James Cheney Logic Programming September 22,2014

Unification (l1)

?- X = c.

X=c

yes

?- £(X,9(Y,2)) = f(c,9(X,Y)).

Unification (I1)

James Cheney Logic Programming September 22,2014

Unification (I1)

?2- X = c.

X=c

yes

?- £(X,9(Y,2)) = £(c,9(X,Y)).
X=c

Y=c

Z=c

yes

James Cheney Logic Programming September 22,2014

James Cheney Logic Programming September 22,2014

Unification (l1)

X=c
yes
?- £(X,9(Y,2)) = f(c,9(X,Y)).
X=c
Y=c
Z=c
yes

2= f(X/g(Y/f(X))) = f(c,g(X,Y)).

James Cheney Logic Programming September 22,2014

Unification (l11)

® A substitution is a mapping from variables to
terms

. X1=t1, e o o ,Xn=tn
® Given two terms t and u
® with free variables Xi;...Xn

® a unifier is a substitution that makes t and
u equal

Unification (I1)

X=c

yes

?- f(X,9(Y,2)) = £(c,9(X,Y)).
X=c

Y=c

Z=c

yes

2= £(X,9(Y,£(X))) = £(c,9(X,Y)).

no

James Cheney Logic Programming September 22,2014

Example (I)

£(X,9(Y,2)) = £(c,9(X,Y))

o n & %

James Cheney Logic Programming September 22,2014

James Cheney Logic Programming September 22,2014

Example (I) Example (I)

£f(X,9(Y,2)) = £(c,9(X,Y)) f(X,9(Y,z2)) = £(c,9(X,Y))

James Cheney Logic Programming September 22,2014 James Cheney Logic Programming September 22,2014

Example (I) Example (I)

£(X,9(Y,2)) = £(c,9(X,Y)) £(X,9(Y,2)) = £(c,9(X,Y))

Example (I) Example (I)

£f(X,9(Y,2)) = £(c,9(X,Y)) f(X,9(Y,z2)) = £(c,9(X,Y))

Y
nmu

Example (I) Example (ll)

f(X,9(Y,%2)) = f(c,9(X,Y)) f(X,9(Y,£(X))) = f(c,9(X,Y))

’609 (g)
b{}b

<
| I | I
Q

Example (ll) Example (ll)

£(X,9(Y,£(X))) = £(c,9(X,Y)) £(X,9(Y,£(X))) = £(c,9(X,Y))

=
3
2
[0}
=
@
5
o
<2
v;{
o
S
3
3

Example (ll) Example (ll)

£f(X,9(Y,£(X))) = £(c,9(X,Y)) £f(X,9(Y,£(X))) = £(c,9(X,Y))

Example (ll) Example (ll)

£(X,9(Y,£(X))) = £(c,9(X,Y)) £(X,9(Y,£(X))) = £(c,9(X,Y))

Example (ll) Example (ll)
f(X,9(Y,£(X))) = f(c,9(X,Y)) f(X,9(Y,£(X))) = f(c,9(X,Y))
O @ © @ O @ O @
X = ¢ X = c¢C
i de do i e @
Y = £(X) Y = £(X) RRLT—. -7
f(X) = ¢c?? f(X) = c??

Robinson's Algorithm (I)

® Consider a general unification problem
t: = u, t2 = v, ..., th = un

® Reduce the problem by decomposing each
equation into one or more "smaller"
equations

® Succeed if we reduce to a "solved form",
otherwise fail

Robinson's Algorithm (ll)

® Two constants unify if they are equal.
c=c¢, P> P

c =d, P - fail

James Cheney Logic Programming September 22,2014

Robinson's Algorithm (lll)

® Two function applications unify if the head symbols
are equal, and the corresponding arguments unify.

f(t1,eee,tn) = f(U1,+..,Un), P >
ti = u ,... th = un , P
® Must have equal numbers of arguments
f(...) = g(...),P- fail

f(...) = ¢, P-fail

James Cheney Logic Programming September 22,2014

Robinson's Algorithm (1V)

® Otherwise, a variable X unifies with a term t
provided X does not occur in t.

X =t, P» P[t/X]
(occurs-check: X must not be in Vars (t))

® Proceed by substituting t for X in P.

James Cheney Logic Programming September 22,2014

James Cheney Logic Programming September 22,2014

Occurs check

® What happens if we try to unify X with something
that contains X?

?- X = £(X).
® | ogically, this should fail
® there is no (finite) unifier!

® Most Prolog implementations skip this check for
efficiency reasons

® canuseunify with occurs_check/2

James Cheney Logic Programming September 22,2014

Depth-first search (1)

® |dea:To solve atomic goal A,

e IfBis a fact in the program, and 6(A) = O(B), then return
answer 0

® Else,if B - G,..,Gn is a clause in the program, and 6
unifies A with B, then solve 6(G)) ... 0(G,)

® FElse, give up on this goal.

® Backtrack to last choice point
® (Clauses are tried in declaration order

® Compound goals are tried in left-right order

Execution model

® The query is run by trying to find a solution
to the goal using the clauses

® Unification is used to match goals and clauses
® There may be zero, one, or many solutions
® Execution may backtrack

® Formal model called SLD resolution

® which you'll see in the theory lectures

James Cheney Logic Programming September 22,2014

James Cheney Logic Programming September 22,2014

Depth-first search (ll)

® Prolog normally tries clauses in order of appearance in program.
® Assume: foo(a). foo(b). foo(c).

® Then:

James Cheney Logic Programming September 22,2014

Depth-first search (ll)

® Prolog normally searches for clauses in order of appearance in
database.

® Assume: foo(a). foo(b). foo(c).

Depth-first search (ll)

® Prolog normally searches for clauses in order of appearance in
database.

® Assume: foo(a). foo(b). foo(c).

® Then:
?- foo(X).
X = a

ames Chene, ogic Programmin; eptember 22,
Cheney Logic Prog g September 22,2014

Depth-first search (ll)

® Prolog normally searches for clauses in order of appearance in

database.
® Assume: foo(a). foo(b). foo(c).
e Then:

?- foo(X).

X = a;

X = b;

X =c

® Then:
?- foo(X).
X = a;
James Cheney Logic Programming September 22,2014

Depth-first search (ll)

® Prolog normally searches for clauses in order of appearance in
database.

® Assume: foo(a). foo(b). foo(c).

James Cheney Logic Programming September 22,2014

® Then:
?- foo(X).
X = a;
X = b;
X = c;
no
James Cheney Logic Programming September 22,2014

Depth-first search (lll)

® Prolog backtracks to the last choice point if a subgoal fails.

® Assume: bar(b). bar(c). baz(c).

® Then: bar(X),baz(X)

?- bar(X),baz(X).

James Cheney Logic Programming September 22,2014

Depth-first search (lll)

® Prolog backtracks to the last choice point if a subgoal fails.

® Assume: bar(b). bar(c). baz(c).

® Then: bar (X),baz(X)

?- bar(X),baz(X).
X=b

James Cheney Logic Programming September 22,2014

Depth-first search (lll)

® Prolog backtracks to the last choice point if a subgoal fails.
® Assume: bar(b). bar(c). baz(c).

® Then: bar(X),baz(X)

?- bar(X),baz(X).
X=b

James Cheney Logic Programming September 22,2014

Depth-first search (lll)

® Prolog backtracks to the last choice point if a subgoal fails.

® Assume: bar(b). bar(c). baz(c).

® Then: bar (X),baz(X)

?- bar(X),baz(X).

James Cheney Logic Programming September 22,2014

Depth-first search (lll)

® Prolog backtracks to the last choice point if a subgoal fails.

® Assume: bar(b). bar(c). baz(c).

® Then: bar(X),baz(X)

?- bar(X),baz(X).

James Cheney Logic Programming September 22,2014

Depth-first search (lll)

® Prolog backtracks to the last choice point if a subgoal fails.

® Assume: bar(b). bar(c). baz(c).

® Then: bar(X),baz(X)

?- bar(X),baz(X).

Depth-first search (lll)

® Prolog backtracks to the last choice point if a subgoal fails.

® Assume: bar(b). bar(c). baz(c).
® Then:

bar(X),baz(X)

?- bar(X),baz(X).

James Cheney Logic Programming September 22,2014

James Cheney Logic Programming September 22,2014

Depth-first search (lll)

® Prolog backtracks to the last choice point if a subgoal fails.
® Assume: bar(b). bar(c). baz(c).
® Then:

?- bar(X),baz(X).

bar(X),baz(X)

X =c

James Cheney Logic Programming September 22,2014

Depth-first search (lll)

® Prolog backtracks to the last choice point if a subgoal fails.

® Assume: bar(b). bar(c). baz(c).

® Then: bar(X),baz(X)

?- bar(X),baz(X).
X = c;

no

"Generate and test"

® Common Prolog programming idiom:
find(X) :- generate(X), test(X).
® where test(X) checks if X is a solution
® generate(X) searches for solutions
® Can use to constrain (infinite) search space

® (Can use different generators to get different
search strategies besides depth-first

James Cheney Logic Programming September 22,2014

Limitations of depth-first
search

® Recursion needs to be handled carefully to
avoid loops

® Rule order and goal order matter
® More in next lecture
® Not complete "in practice”

® |egitimate answers may be missed due to
loops

James Cheney Logic Programming September 22,2014

Other search strategies

® Breadth-first search / iterative deepening
® Explore all alternatives, interleaved
® Price:memory overhead
® Bottom-up (forward chaining)
® Compute all possible answers derivable from facts & rules

® Only viable for "Datalog" programs with "flat" data (only
constants and variables)

® Supported by commercial tools for big data (LogicBlox,
DLV)

James Cheney Logic Programming September 22,2014

James Cheney Logic Programming September 22,2014

Next time

® Recursion
® [ists, trees, data structures

® Further reading: LPN ch.?2

® Tutorial #I| will be up soon

James Cheney Logic Programming September 22,2014

