Outline for today

Logic Programming ® Quick review
® Equality and unification

o ® How Prolog searches for answers
Lecture 2: Unification and proof search

James Cheney Logic Programming September 22,2014

Quick review Infix operators

® Atoms bart ‘Mr. Burns’ ® Prolog has built-in constants and infix operators
® VariablesX Y Z ® Examples:

® Predicates p(ti,«..,tn) ® Equality:t = u (or=(t,u))

® Terms ® Pairing: (t,u) (or , (t,u))

® Facts father (homer, bart). ® Empty list: [ ]

® Goalsp(ti, ... tn)s «evy a(ti'yee.,ta'). ® List concatenation: [X|Y] (or . (X,Y))

® Rules p(ts) :- g(ts’), ..., r(ts'’). ® You can also define your own infix operators!
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General observations Terms

e Prolog is untyped ® Also have

® everything is a "term"

® Pro]og is declarative ® Numbel'SZ 1 2 3 4 2 —0 . 12 3 4 5
® "predicates” with side effects, such as print, are the exception, not ® Additional constants and infix
the rule
operators
°

Prolog does not have explicit control flow constructs (while, do)

® the search strategy allows us to simulate iteration ® More on these later.
®  but this is not usually the best way to program

Therefore, try to forget what you already know from
other languages
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Unification (1) Unification (I1)

® The equation t = u is a basic goal
® with a special meaning
® What happens if we ask:
?2- X = ¢
?- £(X,9(Y,2)) = £(c,9(X,Y))
?- £(X,9(Y,£(X))) = £(c,9(X,Y))
® And how does it do that?
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Unification (l1)
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Unification (l1)

?- X = c.

X=c

yes

?- £(X,9(Y,2)) = f(c,9(X,Y)).

Unification (I1)
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Unification (I1)

?2- X = c.

X=c

yes

?- £(X,9(Y,2)) = £(c,9(X,Y)).
X=c

Y=c

Z=c

yes
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Unification (l1)

X=c
yes
?- £(X,9(Y,2)) = f(c,9(X,Y)).
X=c
Y=c
Z=c
yes

2= f(X/g(Y/f(X))) = f(c,g(X,Y)).
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Unification (l11)

® A substitution is a mapping from variables to
terms

. X1=t1, e o o ,Xn=tn
® Given two terms t and u
® with free variables Xi;...Xn

® a unifier is a substitution that makes t and
u equal

Unification (I1)

X=c

yes

?- f(X,9(Y,2)) = £(c,9(X,Y)).
X=c

Y=c

Z=c

yes

2= £(X,9(Y,£(X))) = £(c,9(X,Y)).

no
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Example (I)

£(X,9(Y,2)) = £(c,9(X,Y))

o n & %
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Example (I) Example (I)

£f(X,9(Y,2)) = £(c,9(X,Y)) f(X,9(Y,z2)) = £(c,9(X,Y))
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Example (I) Example (I)

£(X,9(Y,2)) = £(c,9(X,Y)) £(X,9(Y,2)) = £(c,9(X,Y))




Example (I) Example (I)

£f(X,9(Y,2)) = £(c,9(X,Y)) f(X,9(Y,z2)) = £(c,9(X,Y))
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Example (I) Example (ll)

f(X,9(Y,%2)) = f(c,9(X,Y)) f(X,9(Y,£(X))) = f(c,9(X,Y))
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Example (ll) Example (ll)

£(X,9(Y,£(X))) = £(c,9(X,Y)) £(X,9(Y,£(X))) = £(c,9(X,Y))
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Example (ll) Example (ll)

£f(X,9(Y,£(X))) = £(c,9(X,Y)) £f(X,9(Y,£(X))) = £(c,9(X,Y))




Example (ll) Example (ll)

£(X,9(Y,£(X))) = £(c,9(X,Y)) £(X,9(Y,£(X))) = £(c,9(X,Y))

Example (ll) Example (ll)
f(X,9(Y,£(X))) = f(c,9(X,Y)) f(X,9(Y,£(X))) = f(c,9(X,Y))
O @ © @ O @ O @
X = ¢ X = c¢C
i de do i e @
Y = £(X) Y = £(X) RRLT—. -7
f(X) = ¢c?? f(X) = c??




Robinson's Algorithm (I)

® Consider a general unification problem
t: = u, t2 = v, ..., th = un

® Reduce the problem by decomposing each
equation into one or more "smaller"
equations

® Succeed if we reduce to a "solved form",
otherwise fail

Robinson's Algorithm (ll)

® Two constants unify if they are equal.
c=c¢, P> P

c =d, P - fail
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Robinson's Algorithm (lll)

® Two function applications unify if the head symbols
are equal, and the corresponding arguments unify.

f(t1,eee,tn) = f(U1,+..,Un), P >
ti = u ,... th = un , P
® Must have equal numbers of arguments
f(...) = g(...),P- fail

f(...) = ¢, P-fail
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Robinson's Algorithm (1V)

® Otherwise, a variable X unifies with a term t
provided X does not occur in t.

X =t, P» P[t/X]
(occurs-check: X must not be in Vars (t))

® Proceed by substituting t for X in P.
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Occurs check

® What happens if we try to unify X with something
that contains X?

?- X = £(X).
® | ogically, this should fail
® there is no (finite) unifier!

® Most Prolog implementations skip this check for
efficiency reasons

® canuseunify with occurs_check/2
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Depth-first search (1)

® |dea:To solve atomic goal A,

e IfBis a fact in the program, and 6(A) = O(B), then return
answer 0

® Else,if B - G,..,Gn is a clause in the program, and 6
unifies A with B, then solve 6(G)) ... 0(G,)

® FElse, give up on this goal.

® Backtrack to last choice point
® (Clauses are tried in declaration order

® Compound goals are tried in left-right order

Execution model

® The query is run by trying to find a solution
to the goal using the clauses

® Unification is used to match goals and clauses
® There may be zero, one, or many solutions
® Execution may backtrack

® Formal model called SLD resolution

® which you'll see in the theory lectures
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Depth-first search (ll)

® Prolog normally tries clauses in order of appearance in program.
® Assume: foo(a). foo(b). foo(c).

® Then:
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Depth-first search (ll)

® Prolog normally searches for clauses in order of appearance in
database.

® Assume: foo(a). foo(b). foo(c).

Depth-first search (ll)

® Prolog normally searches for clauses in order of appearance in
database.

® Assume: foo(a). foo(b). foo(c).

® Then:
?- foo(X).
X = a
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Depth-first search (ll)

® Prolog normally searches for clauses in order of appearance in

database.
® Assume: foo(a). foo(b). foo(c).
e Then:

?- foo(X).

X = a;

X = b;

X =c

® Then:
?- foo(X).
X = a;
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Depth-first search (ll)

® Prolog normally searches for clauses in order of appearance in
database.

® Assume: foo(a). foo(b). foo(c).
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® Then:
?- foo(X).
X = a;
X = b;
X = c;
no
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Depth-first search (lll)

® Prolog backtracks to the last choice point if a subgoal fails.

® Assume: bar(b). bar(c). baz(c).

® Then: bar(X),baz(X)

?- bar(X),baz(X).
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Depth-first search (lll)

® Prolog backtracks to the last choice point if a subgoal fails.

® Assume: bar(b). bar(c). baz(c).

® Then: bar (X),baz(X)

?- bar(X),baz(X).
X=b
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Depth-first search (lll)

® Prolog backtracks to the last choice point if a subgoal fails.
® Assume: bar(b). bar(c). baz(c).

® Then: bar(X),baz(X)

?- bar(X),baz(X).
X=b

James Cheney Logic Programming September 22,2014

Depth-first search (lll)

® Prolog backtracks to the last choice point if a subgoal fails.

® Assume: bar(b). bar(c). baz(c).

® Then: bar (X),baz(X)

?- bar(X),baz(X).
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Depth-first search (lll)

® Prolog backtracks to the last choice point if a subgoal fails.

® Assume: bar(b). bar(c). baz(c).

® Then: bar(X),baz(X)

?- bar(X),baz(X).
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Depth-first search (lll)

® Prolog backtracks to the last choice point if a subgoal fails.

® Assume: bar(b). bar(c). baz(c).

® Then: bar(X),baz(X)

?- bar(X),baz(X).

Depth-first search (lll)

® Prolog backtracks to the last choice point if a subgoal fails.

® Assume: bar(b). bar(c). baz(c).
® Then:

bar(X),baz(X)

?- bar(X),baz(X).
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Depth-first search (lll)

® Prolog backtracks to the last choice point if a subgoal fails.
® Assume: bar(b). bar(c). baz(c).
® Then:

?- bar(X),baz(X).

bar(X),baz(X)

X =c
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Depth-first search (lll)

® Prolog backtracks to the last choice point if a subgoal fails.

® Assume: bar(b). bar(c). baz(c).

® Then: bar(X),baz(X)

?- bar(X),baz(X).
X = c;

no

"Generate and test"

® Common Prolog programming idiom:
find(X) :- generate(X), test(X).
® where test(X) checks if X is a solution
® generate(X) searches for solutions
® Can use to constrain (infinite) search space

® (Can use different generators to get different
search strategies besides depth-first
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Limitations of depth-first
search

® Recursion needs to be handled carefully to
avoid loops

® Rule order and goal order matter
® More in next lecture
® Not complete "in practice”

® |egitimate answers may be missed due to
loops
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Other search strategies

® Breadth-first search / iterative deepening
® Explore all alternatives, interleaved
® Price:memory overhead
® Bottom-up (forward chaining)
® Compute all possible answers derivable from facts & rules

® Only viable for "Datalog" programs with "flat" data (only
constants and variables)

® Supported by commercial tools for big data (LogicBlox,
DLV)
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Next time

® Recursion
® [ists, trees, data structures

® Further reading: LPN ch.?2

® Tutorial #I| will be up soon
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