
Logic Programming

Lecture 2: Unification and proof search

James Cheney Logic Programming September 22, 2014

Outline for today

• Quick review

• Equality and unification

• How Prolog searches for answers

James Cheney Logic Programming September 22, 2014

Quick review
• Atoms bart ‘Mr. Burns’

• Variables X Y Z

• Predicates p(t1,...,tn)

• Terms

• Facts father(homer, bart).

• Goals p(t1,...,tn), ..., q(t1',...,tn').

• Rules p(ts) :- q(ts’), ..., r(ts’’).

James Cheney Logic Programming September 18, 2014

Infix operators

• Prolog has built-in constants and infix operators

• Examples:

• Equality: t = u (or =(t,u))

• Pairing: (t,u) (or ,(t,u))

• Empty list: []

• List concatenation: [X|Y] (or .(X,Y))

• You can also define your own infix operators!

James Cheney Logic Programming September 18, 2014

General observations
• Prolog is untyped

• everything is a "term"

• Prolog is declarative

• "predicates" with side effects, such as print, are the exception, not
the rule

• Prolog does not have explicit control flow constructs (while, do)

• the search strategy allows us to simulate iteration

• but this is not usually the best way to program

• Therefore, try to forget what you already know from
other languages

James Cheney Logic Programming September 18, 2014

Terms

• Also have...

• Numbers: 1 2 3 42 -0.12345

• Additional constants and infix
operators

• More on these later.

James Cheney Logic Programming September 22, 2014

Unification (I)
• The equation t = u is a basic goal

• with a special meaning

• What happens if we ask:

?- X = c

?- f(X,g(Y,Z)) = f(c,g(X,Y))

?- f(X,g(Y,f(X))) = f(c,g(X,Y))

• And how does it do that?

James Cheney Logic Programming September 22, 2014

Unification (II)

James Cheney Logic Programming September 22, 2014

Unification (II)
?- X = c.

James Cheney Logic Programming September 22, 2014

Unification (II)
?- X = c.

X=c

yes

James Cheney Logic Programming September 22, 2014

Unification (II)
?- X = c.

X=c

yes

?- f(X,g(Y,Z)) = f(c,g(X,Y)).

James Cheney Logic Programming September 22, 2014

Unification (II)
?- X = c.

X=c

yes

?- f(X,g(Y,Z)) = f(c,g(X,Y)).

X=c

Y=c

Z=c

yes

James Cheney Logic Programming September 22, 2014

Unification (II)
?- X = c.

X=c

yes

?- f(X,g(Y,Z)) = f(c,g(X,Y)).

X=c

Y=c

Z=c

yes

?- f(X,g(Y,f(X))) = f(c,g(X,Y)).

James Cheney Logic Programming September 22, 2014

Unification (II)
?- X = c.

X=c

yes

?- f(X,g(Y,Z)) = f(c,g(X,Y)).

X=c

Y=c

Z=c

yes

?- f(X,g(Y,f(X))) = f(c,g(X,Y)).

no

James Cheney Logic Programming September 22, 2014

Unification (III)

• A substitution is a mapping from variables to
terms

•X1=t1,...,Xn=tn

• Given two terms t and u

• with free variables X1...Xn

• a unifier is a substitution that makes t and
u equal

James Cheney Logic Programming September 22, 2014

Example (I)
f(X,g(Y,Z)) = f(c,g(X,Y))

f f

g g

Y Z

c

X Y

X

James Cheney Logic Programming September 22, 2014

Example (I)
f(X,g(Y,Z)) = f(c,g(X,Y))

ff

gg

Y Z

c

X Y

X

James Cheney Logic Programming September 22, 2014

Example (I)
f(X,g(Y,Z)) = f(c,g(X,Y))

f f

g g

Y Z

c

X Y

X

James Cheney Logic Programming September 22, 2014

Example (I)
f(X,g(Y,Z)) = f(c,g(X,Y))

f f

g g

Y Z

c

X Y

X

James Cheney Logic Programming September 22, 2014

Example (I)
f(X,g(Y,Z)) = f(c,g(X,Y))

f f

g g

Y Z

c

X Y

X

James Cheney Logic Programming September 22, 2014

Example (I)
f(X,g(Y,Z)) = f(c,g(X,Y))

f f

g g

Y Z

c

X Y

X

James Cheney Logic Programming September 22, 2014

Example (I)
f(X,g(Y,Z)) = f(c,g(X,Y))

f f

g g

Y Z

c

X Y

X

X = c
Y = X
Z = Y

James Cheney Logic Programming September 22, 2014

Example (I)
f(X,g(Y,Z)) = f(c,g(X,Y))

f f

g g

Y Z

c

X Y

X

X = c
Y = c
Z = c

c

c c c c

James Cheney Logic Programming September 22, 2014

Example (II)
f(X,g(Y,f(X))) = f(c,g(X,Y))

f f

g g

Y

c

X Y

X

f

X

James Cheney Logic Programming September 22, 2014

Example (II)
f(X,g(Y,f(X))) = f(c,g(X,Y))

ff

gg

Y

c

X Y

X

f

X
James Cheney Logic Programming September 22, 2014

Example (II)
f(X,g(Y,f(X))) = f(c,g(X,Y))

f f

g g

Y

c

X Y

X

f

X

James Cheney Logic Programming September 22, 2014

Example (II)
f(X,g(Y,f(X))) = f(c,g(X,Y))

f f

g g

Y

c

X Y

X

f

X
James Cheney Logic Programming September 22, 2014

Example (II)
f(X,g(Y,f(X))) = f(c,g(X,Y))

f f

g g

Y

c

X Y

X

f

X

James Cheney Logic Programming September 22, 2014

Example (II)
f(X,g(Y,f(X))) = f(c,g(X,Y))

f f

g g

Y

c

X Y

X

f

X
James Cheney Logic Programming September 22, 2014

Example (II)
f(X,g(Y,f(X))) = f(c,g(X,Y))

f f

g g

Y

c

X Y

X

f

X

X = c
Y = X

James Cheney Logic Programming September 22, 2014

Example (II)
f(X,g(Y,f(X))) = f(c,g(X,Y))

f f

g g

Y

c

X Y

X

f

X

X = c
Y = c

Y = f(X)
f(X) = c??

c

cc c

c
James Cheney Logic Programming September 22, 2014

Example (II)
f(X,g(Y,f(X))) = f(c,g(X,Y))

f f

g g

Y

c

X Y

X

f

X

X = c
Y = c

Y = f(X)
f(X) = c??

c

cc c

c

James Cheney Logic Programming September 22, 2014

Robinson's Algorithm (I)

• Consider a general unification problem

t1 = u1, t2 = u2, ..., tn = un

• Reduce the problem by decomposing each
equation into one or more "smaller"
equations

• Succeed if we reduce to a "solved form",
otherwise fail

James Cheney Logic Programming September 22, 2014

Robinson's Algorithm (II)

• Two constants unify if they are equal.

c = c, P ! P
c = d, P ! fail.

James Cheney Logic Programming September 22, 2014

Robinson's Algorithm (III)

• Two function applications unify if the head symbols
are equal, and the corresponding arguments unify.

f(t1,...,tn) = f(u1,...,un), P !
 t1 = u1 ,... tn = un , P

• Must have equal numbers of arguments

f(...) = g(...), P ! fail

f(...) = c, P ! fail.

James Cheney Logic Programming September 22, 2014

Robinson's Algorithm (IV)

• Otherwise, a variable X unifies with a term t
provided X does not occur in t.

X = t, P ! P[t/X]
(occurs-check: X must not be in Vars(t))

• Proceed by substituting t for X in P.

James Cheney Logic Programming September 22, 2014

Occurs check
• What happens if we try to unify X with something

that contains X?

?- X = f(X).

• Logically, this should fail

• there is no (finite) unifier!

• Most Prolog implementations skip this check for
efficiency reasons

• can use unify_with_occurs_check/2

James Cheney Logic Programming September 22, 2014

Execution model

• The query is run by trying to find a solution
to the goal using the clauses

• Unification is used to match goals and clauses

• There may be zero, one, or many solutions

• Execution may backtrack

• Formal model called SLD resolution

• which you'll see in the theory lectures

James Cheney Logic Programming September 22, 2014

Depth-first search (I)
• Idea: To solve atomic goal A,

• If B is a fact in the program, and θ(A) = θ(B), then return
answer θ

• Else, if B :- G1,...,Gn is a clause in the program, and θ
unifies A with B, then solve θ(G1) ... θ(Gn)

• Else, give up on this goal.

• Backtrack to last choice point

• Clauses are tried in declaration order

• Compound goals are tried in left-right order

James Cheney Logic Programming September 22, 2014

Depth-first search (II)
• Prolog normally tries clauses in order of appearance in program.

• Assume: foo(a). foo(b). foo(c).

• Then:

?- foo(X). foo(X)

James Cheney Logic Programming September 22, 2014

Depth-first search (II)
• Prolog normally searches for clauses in order of appearance in

database.

• Assume: foo(a). foo(b). foo(c).

• Then:

?- foo(X).

X = a

foo(X)

X=a

done

James Cheney Logic Programming September 22, 2014

Depth-first search (II)
• Prolog normally searches for clauses in order of appearance in

database.

• Assume: foo(a). foo(b). foo(c).

• Then:

?- foo(X).

X = a;

X = b

foo(X)

X=a

done

X=b

done

James Cheney Logic Programming September 22, 2014

Depth-first search (II)
• Prolog normally searches for clauses in order of appearance in

database.

• Assume: foo(a). foo(b). foo(c).

• Then:

?- foo(X).

X = a;

X = b;

X = c

foo(X)

X=a

done

X=b

done

X=c

done

James Cheney Logic Programming September 22, 2014

Depth-first search (II)
• Prolog normally searches for clauses in order of appearance in

database.

• Assume: foo(a). foo(b). foo(c).

• Then:

?- foo(X).

X = a;

X = b;

X = c;

no

foo(X)

X=a

done

X=b

done

X=c

done

James Cheney Logic Programming September 22, 2014

Depth-first search (III)
• Prolog backtracks to the last choice point if a subgoal fails.

• Assume: bar(b). bar(c). baz(c).

• Then:

?- bar(X),baz(X).

bar(X),baz(X)

James Cheney Logic Programming September 22, 2014

Depth-first search (III)
• Prolog backtracks to the last choice point if a subgoal fails.

• Assume: bar(b). bar(c). baz(c).

• Then:

?- bar(X),baz(X).

bar(X),baz(X)

X=b

James Cheney Logic Programming September 22, 2014

Depth-first search (III)
• Prolog backtracks to the last choice point if a subgoal fails.

• Assume: bar(b). bar(c). baz(c).

• Then:

?- bar(X),baz(X).

bar(X),baz(X)

X=b

baz(b)

James Cheney Logic Programming September 22, 2014

Depth-first search (III)
• Prolog backtracks to the last choice point if a subgoal fails.

• Assume: bar(b). bar(c). baz(c).

• Then:

?- bar(X),baz(X).

bar(X),baz(X)

X=b

baz(b)

James Cheney Logic Programming September 22, 2014

Depth-first search (III)
• Prolog backtracks to the last choice point if a subgoal fails.

• Assume: bar(b). bar(c). baz(c).

• Then:

?- bar(X),baz(X).

bar(X),baz(X)

X=b

baz(b)

James Cheney Logic Programming September 22, 2014

Depth-first search (III)
• Prolog backtracks to the last choice point if a subgoal fails.

• Assume: bar(b). bar(c). baz(c).

• Then:

?- bar(X),baz(X).

bar(X),baz(X)

X=b X=c

baz(b)

James Cheney Logic Programming September 22, 2014

Depth-first search (III)
• Prolog backtracks to the last choice point if a subgoal fails.

• Assume: bar(b). bar(c). baz(c).

• Then:

?- bar(X),baz(X).

bar(X),baz(X)

X=b X=c

baz(c)baz(b)

James Cheney Logic Programming September 22, 2014

Depth-first search (III)
• Prolog backtracks to the last choice point if a subgoal fails.

• Assume: bar(b). bar(c). baz(c).

• Then:

?- bar(X),baz(X).

X = c

bar(X),baz(X)

X=b X=c

baz(c)baz(b)

done

James Cheney Logic Programming September 22, 2014

Depth-first search (III)
• Prolog backtracks to the last choice point if a subgoal fails.

• Assume: bar(b). bar(c). baz(c).

• Then:

?- bar(X),baz(X).

X = c;

no

bar(X),baz(X)

X=b X=c

baz(c)baz(b)

done

James Cheney Logic Programming September 22, 2014

"Generate and test"

• Common Prolog programming idiom:

find(X) :- generate(X), test(X).

• where test(X) checks if X is a solution

• generate(X) searches for solutions

• Can use to constrain (infinite) search space

• Can use different generators to get different
search strategies besides depth-first

James Cheney Logic Programming September 22, 2014

Limitations of depth-first
search

• Recursion needs to be handled carefully to
avoid loops

• Rule order and goal order matter

• More in next lecture

• Not complete "in practice"

• legitimate answers may be missed due to
loops

James Cheney Logic Programming September 22, 2014

Other search strategies
• Breadth-first search / iterative deepening

• Explore all alternatives, interleaved

• Price: memory overhead

• Bottom-up (forward chaining)

• Compute all possible answers derivable from facts & rules

• Only viable for "Datalog" programs with "flat" data (only
constants and variables)

• Supported by commercial tools for big data (LogicBlox,
DLV)

James Cheney Logic Programming September 22, 2014

Next time

• Recursion

• Lists, trees, data structures

• Further reading: LPN ch. 2

• Tutorial #1 will be up soon

