Logic Programming

Lecture 2: Unification and proof search

Outline for today

- Quick review
- Equality and unification
- How Prolog searches for answers

James Cheney

Logic Programming

September 22, 2014

Quick review

- Atoms bart 'Mr. Burns'
- Variables X Y Z
- Predicates $p(t_1, \ldots, t_n)$
- Terms

James Cheney

- Facts father(homer, bart).
- Goals $p(t_1,...,t_n)$, ..., $q(t_1',...,t_n')$.
- Rules p(ts) :- q(ts'), ..., r(ts'').

Infix operators

- Prolog has built-in constants and infix operators
- Examples:
 - Equality: t = u (or = (t, u))
 - Pairing: (t,u) (or , (t,u))
 - Empty list: []
 - List concatenation: [X | Y] (or . (X, Y))
- You can also define your own infix operators!

General observations

- Prolog is **untyped**
 - everything is a "term"
- Prolog is **declarative**
 - "predicates" with side effects, such as print, are the exception, not the rule
- Prolog does **not** have explicit control flow constructs (while, do)
 - the search strategy allows us to simulate iteration
 - but this is not usually the best way to program
- Therefore, try to **forget what you already know** from other languages

```
James Cheney
```

Logic Programming

September 18, 2014

Terms

- Also have...
 - Numbers: 1 2 3 42 -0.12345
 - Additional constants and infix operators
- More on these later.

lames	Cheney	

Logic Programming

Unification (II)

September 18, 2014

Unification (I)

- The equation t = u is a basic goal
 - with a special meaning
- What happens if we ask:
 - ?-X = c
 - (X,g(Y,Z)) = f(c,g(X,Y))
 - (x,g(X,f(X))) = f(c,g(X,Y))
- And how does it do that?

Unification (II)

? - X = c.

Unification (II)

?- *X* = *c*. X=c yes

James Cheney	Logic Programming	September 22, 2014	James Cheney	Logic Programming	September 22, 2014

Unification (II)

?-X = c.

Х=с

yes

$$(Y, g(Y, Z)) = f(C, g(X, Y)).$$

Unification (II)

?-X = c.
X=c
yes
?- $f(X,g(Y,Z)) = f(c,g(X,Y)).$
X=c
Y=c
Z=c
yes

Unification (II)

? - X = c.
X=c
yes
(Y, g(Y, Z)) = f(c, g(X, Y)).
X=c
Y=c
Z=c
yes
?- $f(X,g(Y,f(X))) = f(c,g(X,Y)).$

Unification (II)

? - X = c.
X=c
yes
(Y, g(Y, Z)) = f(C, g(X, Y)).
X=c
Y=c
Z=c
yes
?- $f(X,g(Y,f(X))) = f(c,g(X,Y)).$
no

James Cheney

Logic Programming

Unification (III)

- A *substitution* is a mapping from variables to terms
 - $X_1=t_1, \ldots, X_n=t_n$
- $\bullet\,$ Given two terms t and u
 - with free variables $X_1 \dots X_n$
- a *unifier* is a substitution that makes t and u equal

Example (I)

Logic Programming

f(X,g(Y,Z)) = f(c,g(X,Y))

September 22, 2014

James Cheney

September 22, 2014

Example (I)

f(X,g(Y,Z)) = f(c,g(X,Y))

Example	(I)
---------	------------

f(X,q(Y,Z)) = f(C,q(X,Y))

James Cheney

James Cheney

September 22, 2014

Example (I)

Logic Programming

f(X,g(Y,Z)) = f(c,g(X,Y))

Example (I)

f(X,q(Y,Z)) = f(C,q(X,Y))

September 22, 2014

Example (I)

f(X,g(Y,Z)) = f(c,g(X,Y))

f(X,g(Y,Z)) = f(c,g(X,Y))

Example (I)

f(X,g(Y,Z)) = f(c,g(X,Y))

Example (II)

f(X,g(Y,f(X))) = f(c,g(X,Y))

Example (II)

f(X,g(Y,f(X))) = f(c,g(X,Y))

Example (II)

f(X,g(Y,f(X))) = f(c,g(X,Y))

Robinson's Algorithm (I)

• Consider a general unification problem

 $t_1 = u_1, t_2 = u_2, \ldots, t_n = u_n$

- Reduce the problem by decomposing each equation into one or more "smaller" equations
- Succeed if we reduce to a "solved form", otherwise fail

lames	Cheney

Logic Programming

September 22, 2014

Robinson's Algorithm (II)

• Two constants unify if they are equal.

 $c = c, P \rightarrow P$

c = d, $P \rightarrow fail.$

James Cheney

Logic Programming

September 22, 2014

Robinson's Algorithm (III)

• Two function applications unify if the head symbols are equal, and the corresponding arguments unify.

```
f(t_1,\ldots,t_n) = f(u_1,\ldots,u_n), P \rightarrow
```

 t_1 = u_1 ,... t_n = u_n , P

• Must have equal numbers of arguments

 $f(\ldots) = g(\ldots), P \rightarrow fail$ $f(\ldots) = c, P \rightarrow fail.$

Robinson's Algorithm (IV)

• Otherwise, a variable X unifies with a term t provided X does not occur in t.

 $X = t, P \rightarrow P[t/X]$

(occurs-check:X must not be in Vars(t))

• Proceed by substituting t for X in P.

Occurs check

• What happens if we try to unify X with something that *contains* X?

?-X = f(X).

- Logically, this should fail
 - there is no (finite) unifier!
- Most Prolog implementations skip this check for efficiency reasons
 - can use unify_with_occurs_check/2

```
James Cheney
```

Logic Programming

September 22, 2014

Depth-first search (I)

- Idea: To solve atomic goal A,
 - If B is a **fact** in the program, and $\theta(A) = \theta(B)$, then return answer θ
 - Else, if $B := G_1, ..., G_n$ is a **clause** in the program, and θ unifies A with B, then solve $\theta(G_1) ... \theta(G_n)$
 - Else, give up on this goal.
 - **Backtrack** to last choice point
- Clauses are tried in declaration order
- Compound goals are tried **in left-right order**

James Cheney

Execution model

- The query is run by trying to find a solution to the goal using the clauses
 - Unification is used to match goals and clauses
 - There may be zero, one, or many solutions
 - Execution may backtrack
- Formal model called **SLD** resolution
 - which you'll see in the theory lectures

```
James Cheney
```

Logic Programming

September 22, 2014

Depth-first search (II)

- Prolog normally tries clauses in order of appearance in program.
- Assume: foo(a). foo(b). foo(c).
- Then:
 - ?- foo(X).

Depth-first search (II)

- Prolog normally searches for clauses in order of appearance in database.
- Assume: <u>foo(a)</u>. foo(b). foo(c).

Depth-first search (II)

- Prolog normally searches for clauses in order of appearance in database.
- Assume: foo(a). foo(b). foo(c).

Depth-first search (II)

- Prolog normally searches for clauses in order of appearance in database.
- Assume: foo(a). foo(b). foo(c).

James Cheney

.

Logic Programming

September 22, 2014

Depth-first search (II)

- Prolog normally searches for clauses in order of appearance in database.
- Assume: foo(a). foo(b). foo(c).
 - Then: ?- foo(X). X = a; X = b; X = c; no done done done

James Cheney

Depth-first search (III)

- Prolog backtracks to the last choice point if a subgoal fails.
- Assume: bar(b). bar(c). baz(c).
- Then:

- bar(X),baz(X)
- ?- bar(X),baz(X).

- Prolog backtracks to the last choice point if a subgoal fails.
- Assume: <u>bar(b)</u>. bar(c). baz(c).
- Then:
 - 2 bar(X), baz(X).

James Cheney	Logic Programming	September 22, 2014	James Cheney	Logic Programming	September 22, 2014

Depth-first search (III)

- Prolog *backtracks* to the last choice point if a subgoal fails.
- Assume: bar(b). bar(c). baz(c).
- Then:
 - ?- bar(X),baz(X).

Depth-first search (III)

- Prolog backtracks to the last choice point if a subgoal fails.
- Assume: bar(b). bar(c). baz(c).
- Then:
 - ?- bar(X), baz(X).

Depth-first search (III)

- Prolog backtracks to the last choice point if a subgoal fails. ٠
- Assume: $\underline{bar(b)}$. $\underline{bar(c)}$. $\underline{baz(c)}$. •

Depth-first search (III)

- Prolog backtracks to the last choice point if a subgoal fails. •
- Assume: bar(b). <u>bar(c)</u>. <u>baz(c)</u>. .
- Then:

Depth-first search (III)

- Prolog backtracks to the last choice point if a subgoal fails. •
- Assume: bar(b). <u>bar(c)</u>. baz(c). •
- Then: •

Depth-first search (III)

- Prolog backtracks to the last choice point if a subgoal fails. •
- Assume: bar(b). <u>bar(c)</u>. <u>baz(c)</u>.
- Then: •
 - ?- bar(X), baz(X).
 - X = C

bar(X),baz(X)

James Cheney

Depth-first search (III)

- Prolog backtracks to the last choice point if a subgoal fails.
- Assume: bar(b). bar(c). baz(c).

Limitations of depth-first search

- Recursion needs to be handled carefully to avoid loops
 - Rule order and goal order matter
 - More in next lecture
- Not complete "in practice"
 - legitimate answers may be missed due to loops

"Generate and test"

• Common Prolog programming idiom:

find(X) :- generate(X), test(X).

- where test(X) checks if X is a solution
- generate(X) searches for solutions
 - Can use to constrain (infinite) search space
 - Can use different generators to get different search strategies besides depth-first
- James Cheney

Logic Programming

September 22, 2014

Other search strategies

- Breadth-first search / iterative deepening
 - Explore all alternatives, interleaved
 - Price: memory overhead
- Bottom-up (forward chaining)
 - Compute all possible answers derivable from facts & rules
 - Only viable for "Datalog" programs with "flat" data (only constants and variables)
- Supported by commercial tools for big data (LogicBlox, DLV)

James Cheney

Next time

- Recursion
- Lists, trees, data structures
- Further reading: LPN ch. 2
- Tutorial #1 will be up soon

Logic Programming

September 22, 2014