Logic Programming
Coursework 1

Available: October 6, 2014

Due: October 20, 2014, 3pm
(Updated October 11 to correct typo in problem 2)

Submission. Submit your answers in a single file of Prolog source code, which
will be tested using Sictus Prolog.
Use the following command on DICE:

=> submit 1lp 1 <yourFile.pl>

This coursework is graded on a scale of 50 points. It counts as 10% of the final
grade for LP.

Note: Some exercises rely on material that will not be covered until the pro-
gramming lecture on October 9.

1. Lists. (Total value 10 points)

(a) [6 points] A palindrome is a sequence that reads the same forwards
and backwards. For example, “a”, “aba”, and “able was i ere i saw
elba” are palindromes. Write a predicate palindrome (L) that succeeds
when L is a palindrome.

?- palindrome([]).

yes

?7- palindrome([a,b,b,al).
yes

?7- palindrome([a,b,a,b]l).
no

7- palindrome([a,b,X,Y]).
X=Db, Y=a

(b) [5 points] Write a predicate allpairs(L,M,N) that, given lists L and M
as input, succeeds by binding N to a list containing all pairs of elements
of L and M. (The term (X,Y) builds a pair whose first component is X
and second component is Y.)

?7- allpairs([1,2,3],[a,b,c],N)

N = [(1,a),(1,b),(1,c,),(2,a),(2,b),(2,c),...]
?- allpairs([],[1,2,3],N)

N =[]



2. Aggregation. (Total value 10 points)

Consider the following example data about voting in the Scottish indepen-
dence referendum:

indyref (glasgow,194779,364126,75) .
indyref (edinburgh, 123927,318565,84) .
indyref (aberdeen,59390,143484,82) .
indyref (stirling,25010,37153,90).
indyref (dundee, 53620,93500,78) .

Each tuple indyref (City,For,Votes,Turnout) lists the percentage voting
For independence, the total number of Votes, and the Turnout in a given
City.

e [5 points] Define a predicate percentages/1 such that after solving
percentages (L), the variable L will be bound to a list of pairs (City,Percentage)
where City is a city name and Percentage is the percentage of votes for
independence (i.e. 100 * For divided by Votes).

e [5 points] Define a predicate maxturnout/1 such that after solving
maxturnout (X), the variable X is bound to the name of the city with
the maximum turnout.

For example:

7- percentages(L).

L = [(glasgow,53.49219775572192),...]
?- maxturnout (X) .

X = stirling

For full credit, the solution should be independent of the particular example
facts above. You may use predicates such as setof/3, bagof/3 or £indall/3.
3. Logic puzzle. (Total value 10 points).

Victor, Wendy, Xavier, Yvette and Zeke all work in the same office building,
on five different floors 1-5. None of them works on the same floor. Consider
the following constraints:

e Victor’s floor is between Yvette’s floor and Zeke’s floor.
e Wendy is not on the first floor.
e Zeke’s floor is two floors above Wendy’s.

e Xavier’s floor is not adjacent to Zeke’s.

(a) [2 points] Write a predicate distinct (L) that tests whether a list of
ground terms L has no repeats.

(b) [3 points] Write a predicate generate(V,W,X,Y,Z) that instantiates
the five variable names (representing the five people) with all possible
distinct assignments to floors 1-5.

(c) [4 points] Write a predicate test(V,W,X,Y,Z) that tests whether the
constraints listed above are all satisfied by a given assignment.

(d) [1 point] Include, in a comment in your solution, two solutions to the
above constraints generated by running the goal

generate(V,W,X,Y,Z), test(V,W,X,Y,Z)



4. Flights. (Total value 20 points) Consider the following facts about costs of
flights between different cities:

flight(edi,cdg,90). flight(edi,lhr,50).
flight(lhr,ath,100). flight(lhr,cdg,70).
flight(cdg,ath,150). flight(ath,rho,60).
flight(ath,prg,100). flight(ath,skg,40).

(a)

[1 point] The above flight relation is “asymmetric”: for example, we
know that it costs 90 pounds to fly from Edinburgh to Paris (CDG),
but not the reverse. Assume that it costs the same to fly from A to B
as it does to fly from B to A. Write a predicate flight_sym(A,B,C) that
computes the symmetric closure of flight, that is, succeeds if either
flight(A,B,C) or f1light(B,A,C) holds.

[4 points] Write a predicate f1ight_two_hop(A,B,C) that succeeds when
A and B are airport codes such that B is reachable from A in two hops,
and binds C to the sum of their costs.

[10 points] Write a predicate reachable(A,B,C) that, given an airport
codes A and B, succeeds if there is any path from A to B, binding C to the
total cost of such a path. Paths should avoid revisiting the same airport
and all possile costs should be computed.

[5 points] Write a predicate cheapest (A,B,C) that, given airport codes
A and B, succeeds by binding C to the cost of the cheapest combination
of flights going from A to B, failing if the two airports are not connected.



