Logic Programming 2013–14 Tutorial 3: Logical Consequence

Week 5 QUIZ tutorial (Oct. 14–18)

Tutorial structure: 25 minutes for the quiz, followed by 25 minutes for marking and discussing solutions.

1. Here is a small propositional Prolog programs.

```
godot :- waiting.
waiting :- tick, waiting.
tick.
```

- (a) Rewrite the program in standard logical notation.
- (b) Draw the search tree resulting from the initial query godot.
- (c) What response does Prolog make to the query godot?
- (d) What response would a decision procedure for propositional logic make to the query godot?
- 2. Consider the following Prolog program operating on unary natural numbers (cf. slide 13, Programming Lecture 3).

```
even(z).
odd(s(X)) :- even(X).
even(s(X)) :- odd(X).
```

- (a) Write this program in logical notation, with each line written as a sentence with all quantifiers explicitly given.
- (b) Write the query below in logical notation, again with all quantification explicitly given.

?- odd(X), even(X).

(c) Consider three structures S_1 , S_2 and S_3 defined as follows. The corresponding universes are U_1 , U_2 and U_3 as specified below.

 $U_1 = \mathbb{N}$ (i.e., $\{0, 1, 2, 3, ...\}$) $U_2 = \{0, 1, 2\}$ $U_3 = \{0, 1, 2\}$

The interpretation of the constant z, function symbol s, and predicate symbols even and odd are defined by:

$\mathbf{z}^{\mathcal{S}_1} = 0$	$\mathbf{z}^{\mathcal{S}_2} = 0$	$\mathbf{z}^{\mathcal{S}_3} = 0$
$\mathbf{s}^{\mathcal{S}_1}(x) \;=\; x+1$	$\mathbf{s}^{\mathcal{S}_2}(x) = x + 1 \mod 3$	$\mathbf{s}^{\mathcal{S}_3}(x) \;=\; x+1 \ \mathrm{mod} \ 3$
$even^{\mathcal{S}_1}(x) \Leftrightarrow x \text{ is even}$	$even^{S_2}(x) \Leftrightarrow x \text{ is even}$	$even^{S_3}(x)$ is always true
$odd^{\mathcal{S}_1}(x) \Leftrightarrow x \text{ is odd}$	$odd^{\mathcal{S}_2}(x) \Leftrightarrow x \text{ is odd}$	$odd^{\mathcal{S}_3}(x)$ is always true

Which of these structures are models of the program?

- (d) The query in part (b) is not a logical consequence of the program. Justify this statement!
- (e) Is $\neg \exists X. even(X) \land odd(X)$ a logical consequence of the program?
- (f) Is $\exists X. odd(X)$ a logical consequence of the program?