
T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Logic Programming:
Term manipulation, Meta-Programming

Alan Smaill

Nov 21, 2013

Alan Smaill Logic Programming: Term manipulation, Meta-Programming Nov 21, 2013 1/28

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Today

Reminder of term manipulation predicates

var/1, functor/2 etc

Meta-programming

call/1
symbolic programming
Prolog in Prolog

Examinable material

Alan Smaill Logic Programming: Term manipulation, Meta-Programming Nov 21, 2013 2/28

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Recall

var/1 holds if argument is Prolog variable, when called.

nonvar/1 holds if argument is not a variable when called
(ground, or partially instantiated)

None of these affect binding.

Alan Smaill Logic Programming: Term manipulation, Meta-Programming Nov 21, 2013 3/28

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Other term properties

number/1: -89, 1.007

integer/1: -89, 6000

float/1: 0.1, 67.6543

atom/1: a,f,g1567

atomic/1: a,f,g1567,1.007,-89

Alan Smaill Logic Programming: Term manipulation, Meta-Programming Nov 21, 2013 4/28

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Structural equality

Can test for whether terms are identical:

The ==/2 operator tests whether two terms are exactly
identical,

Including variable names! (No unification!)

?- X == X.
yes
?- X == Y.
no

Alan Smaill Logic Programming: Term manipulation, Meta-Programming Nov 21, 2013 5/28

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Structural comparison

\==/2: tests that two terms are not identical

?- X \== X.
no
?- X \== Y.
yes

Alan Smaill Logic Programming: Term manipulation, Meta-Programming Nov 21, 2013 6/28

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Recall: breadth-first search

Keep track of all possible solutions, try shortest ones first

Maintain a “queue” of solutions

bfs([[Node|Path],_], [Node|Path]) :-
goal(Node).

bfs([Path|Paths], S) :-
extend(Path,NewPaths),
append(Paths,NewPaths,Paths1),
bfs(Paths1,S).

bfs_start(N,P) :- bfs([[N]],P).

Alan Smaill Logic Programming: Term manipulation, Meta-Programming Nov 21, 2013 7/28

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

A difference list version

Here is a more efficient way, using difference lists —
the first two arguments to bfs dl/2 are thus a (difference) list of
lists, and the associated difference list variable.

bfs_dl([[Node|Path]|_], _, [Node|Path]) :-
goal(Node).

bfs_dl([Path|Paths], Z, Solution) :-
extend(Path,NewPaths),
append(NewPaths,Z1,Z),
Paths \== Z1, %% (Paths,Z1) is not empty DL
bfs_dl(Paths,Z1,Solution).

bfs_dl_start(N,P) :- bfs_dl([[N]|X],X,P).

\== checks if terms Paths,Z1 are identical as terms

Alan Smaill Logic Programming: Term manipulation, Meta-Programming Nov 21, 2013 8/28

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Why more efficient?

For the \==/2 test, recall that the empty difference list is
represented as a pair X/X with two occurrences of the same
variable.

Notice that, although the new version uses the usual append/3, its
first argument is the list of new paths, not the list of current paths,
which is usually much larger.

Alan Smaill Logic Programming: Term manipulation, Meta-Programming Nov 21, 2013 9/28

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

meta-Programming: call/1

call/1:

Given a Prolog term G, solve it as a goal

?- call(append([1],[2],X)).
X = [1,2].

?- read(X), call(X).
|: member(Y,[1,2]).
X = member(1,[1,2])

Alan Smaill Logic Programming: Term manipulation, Meta-Programming Nov 21, 2013 10/28

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

call with =..

. . . allows some devious things.

callwith(P,Args) :-
Atom =.. [P|Args], call(Atom).

map(P,[],[]).
map(P,[X|Xs],[Y|Ys]):-

callwith(P,[X,Y]), map(P,Xs,Ys)

plusone(N,M) :- M is N+1.

?- map(plusone,[1,2,3,4,5],L).
L = [2,3,4,5,6].

Alan Smaill Logic Programming: Term manipulation, Meta-Programming Nov 21, 2013 11/28

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Symbolic programming

Propositions

prop(true).
prop(false).
prop(and(P,Q)) :- prop(P), prop(Q).
prop(or(P,Q)) :- prop(P), prop(Q).
prop(imp(P,Q)) :- prop(P), prop(Q).
prop(not(P)) :- prop(P).

Alan Smaill Logic Programming: Term manipulation, Meta-Programming Nov 21, 2013 12/28

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Formula Simplification

simp(and(true,P),P).
simp(or(false,P),P).
simp(imp(P,false), not(P)).
simp(imp(true,P), P).
simp(and(P,Q), and(P1,Q)) :-
simp(P,P1).
...

Alan Smaill Logic Programming: Term manipulation, Meta-Programming Nov 21, 2013 13/28

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Satisfiability checking

Given a formula, find a satisfying assignment for the atoms in
it;

Assume atoms given [p1,...,pn].

A valuation is a list [(p1,true|false),...].

gen([],[]).
gen([P|Ps], [(P,V)|PVs]) :-

(V=true;V=false),
gen(Ps,PVs).

Alan Smaill Logic Programming: Term manipulation, Meta-Programming Nov 21, 2013 14/28

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Evaluation

sat(V,true).
sat(V,and(P,Q)) :- sat(V,P), sat(V,Q).
sat(V,or(P,Q)) :- sat(V,P) ; sat(V,Q).
sat(V,imp(P,Q)) :- \+(sat(V,P))

; sat(V,Q).
sat(V,not(P)) :- \+(sat(V,P)).
sat(V,P) :- atom(P),

member((P,true),V).

Alan Smaill Logic Programming: Term manipulation, Meta-Programming Nov 21, 2013 15/28

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Satisfiability

Generate a valuation

Test whether it satisfies Q

satisfy(Ps,Q,V) :- gen(Ps,V),
sat(V,Q).

(On failure, backtrack & try another valuation)

Alan Smaill Logic Programming: Term manipulation, Meta-Programming Nov 21, 2013 16/28

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Prolog in Prolog

Represent definite clauses

rule(Head,[Body,....,Body]).

A Prolog interpreter in Prolog:

prolog(Goal) :- rule(Goal,Body),
prologs(Body)

prologs([]).
prologs([Goal|Goals]) :- prolog(Goal),

prologs(Goals).

Alan Smaill Logic Programming: Term manipulation, Meta-Programming Nov 21, 2013 17/28

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Example

rule(p(X,Y), [q(X), r(Y)]).
rule(q(1),[]).
rule(r(2),[]).
rule(r(3),[]).

?- prolog(p(X,Y)).
X = 1
Y = 2

Alan Smaill Logic Programming: Term manipulation, Meta-Programming Nov 21, 2013 18/28

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

So what?

Prolog interpreter already runs programs. . .

Self-interpretation is interesting because we can examine or
modify behaviour of interpreter.

Alan Smaill Logic Programming: Term manipulation, Meta-Programming Nov 21, 2013 19/28

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

rules with “justifications!

rule_pf(p(1,2), [], rule1).
rule_pf(p(X,Y), [q(X), r(Y)],rule2(X,Y)).
rule_pf(q(1),[],rule3).
rule_pf(r(2),[],rule4).
rule_pf(r(3),[],rule5).

Alan Smaill Logic Programming: Term manipulation, Meta-Programming Nov 21, 2013 20/28

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Witnesses

Now we can produce proof trees showing which rules were used:

prolog_pf(Goal,[Tag|Proof]) :-
rule_pf(Goal,Body,Tag),
prologs_pf(Body,Proof).

prologs_pf([],[]).
prologs_pf([Goal|Goals],[Proof|Proofs]) :-

prolog_pf(Goal,Proof),
prologs_pf(Goals,Proofs).

Alan Smaill Logic Programming: Term manipulation, Meta-Programming Nov 21, 2013 21/28

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Witnesses

“Is there a proof of p(1,2) that doesn’t use rule 1?”

?- prolog_pf(p(1,2),Prf),
\+(in_proof(rule1,Prf)).

Prf = [rule2,[rule3, rule4]].

Alan Smaill Logic Programming: Term manipulation, Meta-Programming Nov 21, 2013 22/28

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Other applications

Iterative deepening interpreter:
as we saw for general search, we can:
– search exhaustively to a given depth;
– if no solution found, increase depth bound and recurse.

This way, we are assured to find a solution if there is one.

Tracing
Can implement trace/1 this way

Declarative debugging

Given an error in output, “zoom in” on input rules that were
used
These are likely to be the ones with problems

For more on this, see LPN, ch. 9, and Bratko, ch. 23

Alan Smaill Logic Programming: Term manipulation, Meta-Programming Nov 21, 2013 23/28

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Review

Material covered in LPN, ch. 1-6:

Terms, variables, unification (+/- occurs check)

Arithmetic expressions/evaluation

Recursion, avoiding non-termination

Programming with lists and terms

Expect ability to solve problems similar to those in tutorial
programming exercises (or textbook exercises)

Alan Smaill Logic Programming: Term manipulation, Meta-Programming Nov 21, 2013 24/28

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Review

Material covered in LPN, ch. 7-11:

Definite clause grammars

Difference lists

Non-logical features (“is”, cut, negation, assert/retract)

Collecting solutions (findall, bagof, setof)

Term manipulation (var, =.., functor, arg, call)

Expect ability to explain concepts & use in simple Prolog
programs

Alan Smaill Logic Programming: Term manipulation, Meta-Programming Nov 21, 2013 25/28

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Review

Advanced topics (Bratko ch. 11-12, 14, 23)

Search techniques (DFS, IDS, BFS)

Symbolic programming & meta-programming

Expect understanding of basic ideas

not ability to write large programs from scratch under time
pressure

Not higher-order programs (may appear in theory exam,
though)

Alan Smaill Logic Programming: Term manipulation, Meta-Programming Nov 21, 2013 26/28

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Some exam info

Programming exam: 2 hours

DICE machine with SICSTUS Prolog available

(Documentation won’t be, but exam will not rely on
memorizing obscure details)

Sample exam on course web page

Some exams are on ITO web page; questions similar but
different format.

Alan Smaill Logic Programming: Term manipulation, Meta-Programming Nov 21, 2013 27/28

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Other resources

There is a lot more to logic programming!

Books: “The Art of Prolog”, Sterling & Shapiro, MIT Press

Association for Logic Programming

Journals: Theory and Practice of Logic Programming;
main journal before 2001 was Journal of Logic Programming

Main conferences:

International Conference on Logic Programming (ICLP) - main
annual conference.
Principles and Practice of Declarative Programming (PPDP) -
covers LP and other “declarative” paradigms

Honours/MSc projects?? Let me know.

Alan Smaill Logic Programming: Term manipulation, Meta-Programming Nov 21, 2013 28/28

