® o Schoolof .o
informatics @

Logic Programming:
Term manipulation, Meta-Programming

Alan Smaill

Nov 21, 2013

Alan Smaill Logic P ing: Term ipulation, Meta-P i Nov 21, 2013 1/28

TOday o g schootof e BN
informatics \&Y:

» Reminder of term manipulation predicates
» var/1, functor/2 etc
» Meta-programming
» call/1l
» symbolic programming
» Prolog in Prolog

» Examinable material

Alan Smaill Logic Programming: Term ipulation, Meta-P, i Nov 21, 2013 2/28

Recall

o ¢ schootof e (D
informatics @

» var/1 holds if argument is Prolog variable, when called.

» nonvar/1 holds if argument is not a variable when called
(ground, or partially instantiated)

» None of these affect binding.

Alan Smaill Logic Programming: Term ipulation, Meta-P, i Nov 21, 2013 3/28

Other term properties

o ¢ schootof e (D
informatics @

number/1: -89, 1.007
integer/1: -89, 6000

float/1: 0.1, 67.6543

atom/1: a,f,gl567

atomic/1: a,f,g1567,1.007,-89

v v Vv Vv Vv

Alan Smaill Logic Programming: Term ipulation, Meta-P, i Nov 21, 2013

4/28

Structural equality — @
nrormarics - 4

Can test for whether terms are identical:

b The ==/2 operator tests whether two terms are exactly
identical,

» Including variable names! (No unification!)

7- X == X
yes
7- X ==Y
no

Alan Smaill Logic Programming: Term ipulation, Meta-P, i Nov 21, 2013 5/28

Ve

Structural comparison .
School of _e N .
informatics @

b \==/2: tests that two terms are not identical

7- X \== X.
no
7- X \==Y.
yes

Nov 21, 2013 6/28

Alan Smaill Logic Programming: Term ipulation, Meta-P,

o School of
informa

Recall: breadth-first search
tics @

b Keep track of all possible solutions, try shortest ones first

» Maintain a “queue” of solutions

bfs([[Node|Path],_], [Node|Path]) :-
goal(Node) .
bfs([Path|Paths], S) :-
extend (Path,NewPaths),
append (Paths,NewPaths,Pathsl),
bfs(Pathsi,S).
bfs_start(N,P) :- bfs([[N]],P).

Alan Smaill Logic Programming: Term ipulation, Meta-P, i Nov 21, 2013 7/28

A difference list version

o g schootof e BN
informatics @
Here is a more efficient way, using difference lists —

the first two arguments to bfs_d1/2 are thus a (difference) list of
lists, and the associated difference list variable.

bfs_dl1([[Nodel|Path]l|_], _, [NodelPath]) :-
goal (Node) .
bfs_dl([Path|Paths], Z, Solution) :-
extend (Path,NewPaths),
append (NewPaths,Z1,Z),
Paths \== Z1, %% (Paths,Z1) is not empty DL
bfs_dl(Paths,Z1,Solution).

bfs_dl_start(N,P) :- bfs_d1([[N]I[X],X,P).

\== checks if terms Paths,Z1 are identical as terms

Alan Smaill Logic Programming: Term ipulation, Meta-P, i Nov 21, 2013 8/28

Why more efficient?

o ¢ schootof e (D
informatics @

For the \==/2 test, recall that the empty difference list is
represented as a pair X/X with two occurrences of the same

variable.

Notice that, although the new version uses the usual append/3, its
first argument is the list of new paths, not the list of current paths,
which is usually much larger.

Nov 21, 2013 9/28

Alan Smaill Logic Programming: Term ipulation, Meta-P,

meta-Programming: call/1

informatics (@)
call/1:
» Given a Prolog term G, solve it as a goal

?7- call(append([1],[2],X)).
X =1[1,2].

?7- read(X), call(X).
| : member (Y, [1,2]).
X = member(1,[1,2])

Alan Smaill Logic Pr ing: Term i ion, Meta-Pi i Nov 21, 2013 10/28

call with =..

o g schootof e BN
informatics @
... allows some devious things.

callwith(P,Args) :-
Atom =.. [P|Args], call(Atom).

map(P, [1,[]1).
map (P, [XI1Xs], [Y|Ys]):-
callwith(P, [X,Y]), map(P,Xs,Ys)

plusone(N,M) :- M is N+1.

?- map(plusone, [1,2,3,4,5],L).
L = [2’3:4,5;6]'

Alan Smaill Logic Pr ing: Term i ion, Meta-Pro, i Nov 21, 2013 11/28

Symbolic programming

o g schootof e BN
informatics @

Propositions

prop(true) .

prop(false).

prop(and(P,Q)) :- prop(P), prop(Q).
prop(or(P,Q)) :- prop(P), prop(Q).
prop(imp(P,Q)) :- prop(P), prop(Q).
prop(not(P)) :- prop(P).

Alan Smaill Logic Pr ing: Term i ion, Meta-Pi i Nov 21, 2013 12/28

Formula Simplification

o g schootof e BN
informatics @

simp(and(true,P),P).
simp(or(false,P),P).
simp(imp(P,false), not(P)).
simp (imp (true,P), P).
simp(and(P,Q), and(P1,Q)) :-
simp(P,P1).

Alan Smaill Logic Pr ing: Term i ion, Meta-Pi i Nov 21, 2013 13/28

Satisfiability checking

o g schootof e BN
informatics @

» Given a formula, find a satisfying assignment for the atoms in
it;
b Assume atoms given [pl,...,pn].

» A valuation is a list [(pl,truelfalse),...].

gen([1,[1).

gen([P|Ps], [(P,V)|PVs]) :-
(V=true;V=false),
gen(Ps,PVs).

Alan Smaill Logic Pr ing: Term i ion, Meta-Pi i Nov 21, 2013 14/28

Evaluation .
School of e 3 L
informatics @

sat (V,true).

sat(V,and(P,Q)) :- sat(V,P), sat(V,Q).
sat(V,or(P,Q)) :- sat(V,P) ; sat(V,Q).
sat(V,imp(P,Q)) :- \+(sat(V,P))

; sat(V,Q).
sat(V,not(P)) :- \+(sat(V,P)).
sat(V,P) :- atom(P),

member ((P,true),V).

Alan Smaill Logic Pr ing: Term i ion, Meta-Pro, i Nov 21, 2013 15/28

Satisfiability s (@

» Generate a valuation
» Test whether it satisfies Q

satisfy(Ps,Q,V) :- gen(Ps,V),
sat(V,Q).

» (On failure, backtrack & try another valuation)

Alan Smaill Logic Pr ing: Term i ion, Meta-Pi i Nov 21, 2013 16/28

Prolog in Prolog o s @

b Represent definite clauses
rule(Head, [Body,....,Bodyl).

» A Prolog interpreter in Prolog:
prolog(Goal) :- rule(Goal,Body),

prologs (Body)
prologs([1).
prologs([Goal|Goals]) :- prolog(Goal),
prologs(Goals) .

Alan Smaill Logic Pr ing: Term i ion, Meta-Pro, i Nov 21, 2013 17/28

Example

o g schootof e BN
informatics @

rule(p(X,Y), [Q(X), r(V)]).
rule(q(1),[1).
rule(r(2),[1).
rule(r(3),[1).

?- prolog(p(X,Y)).

X=1
Y =2

Alan Smaill Logic Pr ing: Term i ion, Meta-Pi i Nov 21, 2013 18/28

SO What? e School of “* %'1
informatics @

b Prolog interpreter already runs programs. ..

b Self-interpretation is interesting because we can examine or
modify behaviour of interpreter.

Alan Smaill Logic Pr ing: Term i ion, Meta-Pi i Nov 21, 2013 19/28

rules with “justifications! o et . AR
informatics @

rule_pf(p(1,2), [1, rulel).
rule_pf(p(X,Y), [qX), r(Y)],rule2(X,Y)).
rule_pf(q(1), [],ruled).
rule_pf(r(2),[],ruled).
rule_pf(r(3),[],ruleb).

Nov 21, 2013 20/28

Alan Smaill Logic Pr ing: Term i ion, Meta-Pi

Witn €55€5 School of 5,00“‘ vm’ﬁ
tics @

L]
informa

Now we can produce proof trees showing which rules were used:

prolog_pf (Goal, [Tag|Proof]) :-
rule_pf (Goal,Body,Tag),
prologs_pf (Body,Proof) .
prologs_pf ([1,[1).
prologs_pf ([Goal|Goals], [Proof |Proofs]) :-
prolog_pf (Goal,Proof),
prologs_pf (Goals,Proofs).

Alan Smaill Logic Pr ing: Term i ion, Meta-Pro, i Nov 21, 2013 21/28

Witn esses e School of 4 S m’i
informatics @

“Is there a proof of p(1,2) that doesn't use rule 17"

?7- prolog_pf(p(1,2),Prf),
\+(in_proof (rulel,Prf)).

Prf = [rule2, [rule3, rule4]l].

Alan Smaill Logic Pr ing: Term i ion, Meta-Pi i Nov 21, 2013 22/28

Other applications o g schoolof . DN
informatics @
b lterative deepening interpreter:
as we saw for general search, we can:
— search exhaustively to a given depth;
— if no solution found, increase depth bound and recurse.

This way, we are assured to find a solution if there is one.
» Tracing

Can implement trace/1 this way
» Declarative debugging

» Given an error in output, “zoom in" on input rules that were
used
» These are likely to be the ones with problems

For more on this, see LPN, ch. 9, and Bratko, ch. 23

Alan Smaill Logic Pr ing: Term i ion, Meta-Pro, i Nov 21, 2013 23/28

Review

Alan Smaill

v v Vv Vv Vv Vv

Material covered in LPN, ch. 1-6:

Terms, variables, unification (4 /- occurs check)
Arithmetic expressions/evaluation

Recursion, avoiding non-termination
Programming with lists and terms

Expect ability to solve problems similar to those in tutorial
programming exercises (or textbook exercises)

Logic Pr ing: Term i ion, Meta-Pro, i Nov 21, 2013

o ¢ schootof e (D
informatics @

24/28

Alan Smaill

Review o g schootof e BN
informatics \&Y:

v v Vv Vv Vv Vv Vv

Material covered in LPN, ch. 7-11:

Definite clause grammars

Difference lists

Non-logical features (“is”, cut, negation, assert/retract)
Collecting solutions (findall, bagof, setof)

Term manipulation (var, =.., functor, arg, call)

Expect ability to explain concepts & use in simple Prolog
programs

Logic Pr ing: Term i ion, Meta-Pro, i Nov 21, 2013

25/28

Review

Alan Smaill

v v Vv Vv Vv

Advanced topics (Bratko ch. 11-12, 14, 23)
Search techniques (DFS, IDS, BFS)
Symbolic programming & meta-programming
Expect understanding of basic ideas

not ability to write large programs from scratch under time
pressure

Not higher-order programs (may appear in theory exam,
though)

Logic Pr ing: Term i ion, Meta-Pro, i Nov 21, 2013

o ¢ schootof e (D
informatics @

26/28

o School of
informa

Some exam info
tics @

» Programming exam: 2 hours
» DICE machine with SICSTUS Prolog available

» (Documentation won't be, but exam will not rely on
memorizing obscure details)

b Sample exam on course web page

b Some exams are on ITO web page; questions similar but
different format.

Alan Smaill Logic Pr ing: Term i ion, Meta-Pro, i Nov 21, 2013 27/28

Other resources

o g Schoolof .. AGON
informatics (&)

There is a lot more to logic programming!

» Books: “The Art of Prolog”, Sterling & Shapiro, MIT Press
b Association for Logic Programming
» Journals: Theory and Practice of Logic Programming;

main journal before 2001 was Journal of Logic Programming

» Main conferences:

» International Conference on Logic Programming (ICLP) - main
annual conference.

» Principles and Practice of Declarative Programming (PPDP) -
covers LP and other “declarative” paradigms

Honours/MSc projects?? Let me know.

Alan Smaill Logic Pr ing: Term i ion, Meta-Pro, i Nov 21, 2013 28/28

