
T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Logic Programming:
Higher Order LP

Alan Smaill

Nov 14, 2013

Alan Smaill Logic Programming: Higher Order LP Nov 14, 2013 1/30

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Today

Higher order logic programming

Extended syntax
Extended unification
Adapt notion of Uniform Search

This material will not be examinable in the Programming exam.

Alan Smaill Logic Programming: Higher Order LP Nov 14, 2013 2/30

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Extending the logic

Allow variables not just for individuals, but for predicates and
function symbols also.

Explicit quantifiers

Allow “anonymous function patterns”

Languages like ML and Haskell have anonymous functions: haskell:

\x -> x + 4

ML:

fn x -> x + 4

Alan Smaill Logic Programming: Higher Order LP Nov 14, 2013 3/30

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

HO patterns, extended unification

Mix with Prolog variables:

x\ (x + Y)

Now unification has to take account of the binding of variables;
there is no difference if bound variables are renamed; and a pattern
applied to an argument is considered to match with the result of
substituting the argument.
Also such patterns can be the solutions to queries with variables
corresponding to functions.

Alan Smaill Logic Programming: Higher Order LP Nov 14, 2013 4/30

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Examples

[toplevel] ?- (y\ y + 2) 3 = 3 + 2.

yes

[toplevel] ?- (X\ X + 4) = (y\ y + Z).

The answer substitution:
Z = 4

NB bound variables can be upper or lower case.

Alan Smaill Logic Programming: Higher Order LP Nov 14, 2013 5/30

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

λProlog

The language λProlog invented by Dale Miller is based on these
ideas; see web site:

http://www.lix.polytechnique.fr/~dale/lProlog/

The unification algorithm is more complicated, but has the same
aim, of looking for substitutions that when applied make formulae
identical – taking into account bound variable renaming, and
plugging in values in anonymous functions.
The syntax is a bit different – uses curried style, familiar from
Haskell. Because unification uses typing information, some type
declarations are needed.
An implementation:

http://www.lix.polytechnique.fr/Labo/Dale.Miller/
lProlog/terzo/

Alan Smaill Logic Programming: Higher Order LP Nov 14, 2013 6/30

http://www.lix.polytechnique.fr/~dale/lProlog/
http://www.lix.polytechnique.fr/Labo/Dale.Miller/lProlog/terzo/
http://www.lix.polytechnique.fr/Labo/Dale.Miller/lProlog/terzo/

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Example program signature

First, give signature (typing of predicates);
the type o is the type of statements, so a predicate takes some
number of arguments, and the return type is o.

% signature for reverse

type reverse (list A) -> (list A) -> o.

reverse is a predicate of two arguments, each of which is a list.
The type of the elements of the list can be anything (but the same
in both cases) – A acts like a Prolog variable.

Alan Smaill Logic Programming: Higher Order LP Nov 14, 2013 7/30

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Example program

reverse.mod:

module reverse.

type reverse (list A) -> (list A) -> o.
type reverse_aux (list A) -> (list A) -> (list A) -> o.

reverse L1 L2 :- reverse_aux L1 nil L2.
reverse_aux nil L2 L2.
reverse_aux (X::L1) Acc L2 :-

reverse_aux L1 (X::Acc) L2.

This works as expected:

Terzo> #query lists.
?- reverse (3::2::1::5::nil) L.

L = 5 :: 1 :: 2 :: 3 :: nil

Alan Smaill Logic Programming: Higher Order LP Nov 14, 2013 8/30

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Beyond Prolog

So far, this is a fussy way to write normal Prolog.
We can exploit the higher-order features to write a map predicate;
this takes a list and a function, and returns the result of applying
the function to each member of the list.
Because we have relations available, we can also think of mapping
predicates (what could this mean?).

type mapfun (A -> B) -> list A -> list B -> o.
type mappred (A -> B -> o) -> list A -> list B -> o.
type forevery (A -> o) -> list A -> o.

Alan Smaill Logic Programming: Higher Order LP Nov 14, 2013 9/30

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

mapfun

Because we are in a relational, rather than functional, setting,
what is available with the typing A -> B is limited.
Here’s the definition of mapfun:

mapfun F nil nil.
mapfun F (X::L) ((F X)::K) :- mapfun L F K.

Notice the use of F as a variable for a function –
this goes beyond Prolog, and keeps reversibility.

Alan Smaill Logic Programming: Higher Order LP Nov 14, 2013 10/30

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Running mapfun

?- mapfun (x\ x + x) (3::4::5::nil) Y.

Y = 3 + 3 :: 4 + 4 :: 5 + 5 :: nil

We can query for the input given the result:

?- mapfun (x\ x + x) X (3 + 3 :: 8 + 8 :: nil).

X = 3 :: 8 :: nil

and even for the function, given inputs and outputs!

mapfun F (3::4::5::nil) (3+3 :: 4+4 :: 5+5 :: nil).

F = x\ x + x

Alan Smaill Logic Programming: Higher Order LP Nov 14, 2013 11/30

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

mappred

Here’s a definition for mappred;
again note the variable standing for a predicate:

mappred P nil nil.
mappred P (X :: L) (Y :: K) :- P X Y, mappred P L K.

What will happen on back-tracking?

Suppose we have a background predicate:

father jane moses. father john peter.
father jane john. father james peter.

Alan Smaill Logic Programming: Higher Order LP Nov 14, 2013 12/30

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

running mappred

?- mappred father (jane :: john :: nil) L.

L = moses :: peter :: nil ;

L = john :: peter :: nil ;

no more solutions

Alan Smaill Logic Programming: Higher Order LP Nov 14, 2013 13/30

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

mappred reversible

?- mappred father X (moses :: peter:: nil).

X = jane :: john :: nil ;

X = jane :: james :: nil ;

no more solutions

Alan Smaill Logic Programming: Higher Order LP Nov 14, 2013 14/30

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Finding the predicate?

In practice (this implementation), it is not possible to query for a
predicate where the query results in the predicate being called as a
variable.

It is possible to use the higher-order features to indicate candidate
predicates, though, and then search will find all possible predicates.

Alan Smaill Logic Programming: Higher Order LP Nov 14, 2013 15/30

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Quantifiers

Use the following to express quantification:
for ∀x A, use a lambda term to express the binding of the variable,
and then a constant pi to quantify. Thus a goal

∀x x = x

becomes

pi (x\ (x = x))

and ∀P P(0) → P(0) becomes

pi (p\ ((p 0) => (p 0))).

Here => indicates implication; this is a new form of goal, Prolog
only allows conjunction.
Both of the above queries succeed.

Alan Smaill Logic Programming: Higher Order LP Nov 14, 2013 16/30

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Difference lists

Recall standard Prolog difference lists, which give an efficient way
to do some list operations — and also need care in use.
In a higher-order setting, we can achieve the same efficiency gain,
but remain declarative, and indeed retain reversibility.
The idea is that a normal list:

[1,3,5]

is represented by a function that maps any list to the list with
[1,3,5] prepended; in Haskell syntax:

\x -> (1 : 3 : 5 : x)

Alan Smaill Logic Programming: Higher Order LP Nov 14, 2013 17/30

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Difference lists ctd

We can define functions to convert between the normal
representation and this “difference” list version, and get an
efficient way to append lists. Here are the type declarations;
list T is a polymorphically typed list, and the difference lists have
type list T -> list T:

type mkDList list T -> (list T -> list T) -> o.

type append_dl
(list T -> list T) ->
(list T -> list T) ->
(list T -> list T) -> o.

Alan Smaill Logic Programming: Higher Order LP Nov 14, 2013 18/30

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Difference lists ctd

These are implemented as follows:

% mkDList/2 uses standard recursion

mkDList nil (x\ x).
mkDList (H::T) (x\ H::(T’ x)) :- mkDList T T’.

This works in both directions:

?- mkDList (1::3::5::nil) L.

L = x\ 1 :: 3 :: 5 :: x

?- mkDList L (x\ 1::3::5::x).

L = 1 :: 3 :: 5 :: nil

Alan Smaill Logic Programming: Higher Order LP Nov 14, 2013 19/30

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Difference list append

Now think a bit what corresponds to appending lists in this
representation:

append_dl L M (x\ L (M x)).

So append is done via unification; we get reversibility here (there
can be several unifiers, unlike in the usual Prolog situation).

Alan Smaill Logic Programming: Higher Order LP Nov 14, 2013 20/30

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Reversible append

?- mkDList (1::3::5::nil) L, append_dl L L Y.

L = x\ 1 :: 3 :: 5 :: x
Y = x1\ 1 :: 3 :: 5 :: 1 :: 3 :: 5 :: x1

?- mkDList (1::3::5::nil) L, append_dl X Y L.

L = x\ 1 :: 3 :: 5 :: x
X = x1\ 1 :: 3 :: 5 :: x1
Y = x2\ x2 ;

L = x3\ 1 :: 3 :: 5 :: x3
X = x4\ 1 :: 3 :: x4
Y = x5\ 5 :: x5 ;

% and another two solutions

Alan Smaill Logic Programming: Higher Order LP Nov 14, 2013 21/30

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Larger example

Suppose we want to do some sort of reasoning about agents’
beliefs, where the agents may have some false beliefs, and where
agents may introspect about their own beliefs.
This is an example of how λProlog gives a good way to deal
simultaneously with all these issues. Let’s do this in terms of basic
and derived beliefs for a given agent. We introduce the property of
a statement being inferrable – a second-order property.
The signature introduces a new type of agent.

Alan Smaill Logic Programming: Higher Order LP Nov 14, 2013 22/30

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Type declarations

kind agent type.

type bel agent -> o -> o. % derivable beliefs
type bel_base agent -> o -> o. % basis for belief set
type parent agent -> agent -> o.
type ancestor agent -> agent -> o.
type inferrable o -> o.

% some agents

type a agent. type b agent. type c agent.

Alan Smaill Logic Programming: Higher Order LP Nov 14, 2013 23/30

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Agent inference

Here is a simple way to allow inference for the agents
(& is the built-in λProlog conjunction):

bel A B :- base_bel A B.
bel A Q :- base_bel A (P => Q), bel A P.
bel A (P & Q) :- bel A P, bel A Q.
bel A (bel A X) :- bel A X. % introspection

Alan Smaill Logic Programming: Higher Order LP Nov 14, 2013 24/30

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Example ctd

Given a KB about family relationships, we can then express:

% a1 has real facts, plus one extra belief.

base_bel a1 (parent X Y) :- parent X Y.
base_bel a1 (parent sean barney).

% a2 just has real facts

base_bel a2 (parent X Y) :- parent X Y.

% agents have standard notion of ancestor

base_bel A (parent X Y => ancestor X Y).
base_bel A ((parent X Y & ancestor Y Z)

=> (ancestor X Z)).

Alan Smaill Logic Programming: Higher Order LP Nov 14, 2013 25/30

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Querying agent’s beliefs

Now can query for a1’s beliefs, which include the consequences of
the “false” belief, unlike a2’s beliefs:

?- bel a1 (ancestor sean X).

X = barney ;

X = liz ;

no more solutions

?- bel a2 (ancestor sean X).

no

Alan Smaill Logic Programming: Higher Order LP Nov 14, 2013 26/30

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Different inference capabilities

Search becomes expensive quickly here. We can restrict the
amount of inference the agents perform:

bel A (parent A B) :- parent A B.
% believe lambda prolog!

bel A (bel A F) :- bel_base A F.
% limited introspection

bel A F :- inferrable F,
% just look at "interesting" statements
bel_base A G, bel_base A H,
G => H => F.
% limited deductive power
% (got from 2 basic beliefs).

Alan Smaill Logic Programming: Higher Order LP Nov 14, 2013 27/30

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Dependencies between agents’ beliefs

Now we can express more complex relationships between belief
systems.

parent a b.

% belief base
bel_base a (parent b c).
bel_base a ((parent X Y) => (ancestor X Y)).
bel_base a (pi x\ (bel b x) => (bel a x)).

% a believes that he believes
% everything b believes.

bel_base b (parent c b).
% b has this different from a.

Alan Smaill Logic Programming: Higher Order LP Nov 14, 2013 28/30

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Example queries

From this we get that agent a has some strange beliefs –

?- bel a (bel a (parent b X)).

X = c

?- bel a (bel a (parent c X)).

X = b

?- bel a (parent c X).

no

Alan Smaill Logic Programming: Higher Order LP Nov 14, 2013 29/30

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Next time

Next week, we will look at meta-programming in (standard)
Prolog, and what new possibilities this allows us.

We will also review the course and indicate what is the examinable
material.

Alan Smaill Logic Programming: Higher Order LP Nov 14, 2013 30/30

