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Recap (Lecture 3): Definite clause predicate logic

A definite clause is a formula of one of the two shapes below

B (a Prolog fact B . )

A1 ∧ · · · ∧ Ak → B (a Prolog rule B :- A1, . . . ,Ak .)

where A1, . . . ,Ak ,B are all atomic formulas.

A logic program is a list F1, . . . ,Fn of definite clauses

A goal is a list G1, . . . ,Gm of atomic formulas.

The job of the system is to ascertain whether the logical
consequence below holds.

∀Vars(F1).F1, . . . ,∀Vars(Fn).Fn |= ∃Vars(G1, . . . ,Gm).G1∧· · ·∧Gm



Recap (Lecture 5): The minimum Herbrand model

We define the structure H as follows.

I The universe is the Herbrand universe: the set of all ground
terms.

I A constant c is interpreted by cH = c.

I A function symbol f/k is interpreted by
fH(u1, . . . , uk) = f(u1, . . . , uk).

I A predicate symbol p/k is interpreted by

pH(u1, . . . , uk) = true ⇔ the goal p(u1, . . . , uk) is derivable

The minimum Herbrand model H is indeed a model of the
program F1, . . . ,Fn, i.e., for every Fi , we have H |= ∀Vars(Fi ).Fi .



Importance of minimum Herbrand model

Theorem
The logical consequence

∀Vars(F1).F1, . . . ,∀Vars(Fn).Fn |= ∃Vars(G1, . . . ,Gm).G1 ∧ · · · ∧ Gm

holds if and only if

H |= ∃Vars(G1, . . . ,Gm).G1 ∧ · · · ∧ Gm

In other words, an (implicitly existentially quantified) goal
G1, . . . ,Gm is a logical consequence of a program if and only if it is
true in the minimal Herbrand model of the program.

Thus we can understand Prolog programs and queries as being
tools for exploring truth in this special model.



Proof of Theorem

If the logical consequence

∀Vars(F1).F1, . . . ,∀Vars(Fn).Fn |= ∃Vars(G1, . . . ,Gm).G1 ∧ · · · ∧ Gm

holds then

H |= ∃Vars(G1, . . . ,Gm).G1 ∧ · · · ∧ Gm

because H is a model of the program.

Conversely, if

H |= ∃Vars(G1, . . . ,Gm).G1 ∧ · · · ∧ Gm

then, by Lecture 5 Proof of completeness (completed), the goal
G1, . . . ,Gm is derivable by SLD resolution. Whence, by Lecture 5
soundness of inference system:

∀Vars(F1).F1, . . . ,∀Vars(Fn).Fn |= ∃Vars(G1, . . . ,Gm).G1 ∧ · · · ∧ Gm



Aim of lecture

The aim of today’s lecture is to achieve a better understanding of
the minimum Herbrand model.

This will be done using the mathematical notion of least fixed point

To approach this, we first consider some necessary mathematical
definitions



Powersets

A set Y is said to be a subset of a set X (notation Y ⊆ X ) if
every member of Y is a member of X , i.e.,

∀z . z ∈ Y implies z ∈ X

Given any set X , the set of all subsets of X is called the powerset
of X , written P(X ).

Example P({1, 2, 3}) is a set of eight sets

{ { }, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3} }

Example P({ }) is the set { { } } whose only element is { }
(Often one writes ∅ for the empty set. So another way of writing
the above is P(∅) = {∅}.)

Note that if X is a finite set with n elements then P(X ) is a finite
set with 2n elements.
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Monotone functions

A function f : P(X )→ P(X ) is said to be monotone if, for any
pair of subsets X1,X2 ⊆ X , it holds that

X1 ⊆ X2 implies f (X1) ⊆ f (X2)

Examples Consider f1, f2, f3 : P({1, 2, 3})→ P({1, 2, 3}) defined by

f1(Y ) = Y ∪ {1}

f2(Y ) =

{
{1} if 1 ∈ Y

{ } otherwise

f3(Y ) =

{
{ } if 1 ∈ Y

{1} otherwise

Then f1 and f2 are monotone but f3 is not.



Fixed points

Given a function f : P(X )→ P(X ).

I A subset Y ⊆ X is said to be a fixed point of f if the
equation f (Y ) = Y holds.

I A subset Y ⊆ X is said to be the least fixed point of f if it is
a fixed point and, for every fixed point Z of f , it holds that
Y ⊆ Z .

A function may have zero, one or several fixed points. However,
the least fixed point, if it exists, is unique.

Examples Consider f1, f2, f3 : P({1, 2, 3})→ P({1, 2, 3}) defined on
previous slide.

The fixed points of f1 are {1}, {1, 2}, {1, 3}, {1, 2, 3}. The least
fixed point is {1}.
The fixed points of f2 are { }, {1}. The least fixed point is { }.
The function f3 has no fixed points.



What does this have to do with logic programming?

We shall view a program P as determining a monotone function

fP : P(X )→ P(X )

where X is the set of ground atomic formulas

The Herbrand models of P are in one-to-one correspondence with
the fixed points of fP .

The minimal Herbrand model of P corresponds to the least fixed
point of fP .

We first introduce the method by considering the simpler case of
propositional Prolog (as considered in Lectures 1 and 2).
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Example propositional program

arctic ∧ november → noSun

australia ∧ november → sun

november

scotland

scotland → arctic

This determines a function f from

P({arctic, november, noSun, australia, sun, scotland})

to itself.



f (Y ) = {november, scotland} ∪
{noSun | (arctic ∈ Y ) ∧ (november ∈ Y )} ∪
{sun | (australia ∈ Y ) ∧ (november ∈ Y )} ∪
{arctic | scotland ∈ Y } ∪ Y

The idea is that f (Y ) contains all the atomic facts in the program
(in this case november and scotland) together with all atoms
that can be derived from atoms in Y using a single rule of
inference in the inference system of Lecture 1.

It is easy to check that f is monotone.

(Exercise!)
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{noSun | (arctic ∈ Y ) ∧ (november ∈ Y )} ∪
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f ({ }) =
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f (f (f ({ }))) =

{november, scotland, arctic, noSun}

f (f (f (f ({ })))) =

{november, scotland, arctic, noSun}
= f (f (f ({ })))

The set f (f (f ({ }))) is the least fixed point of f .
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Observations

The least fixed point

{november, scotland, arctic, noSun}

contains exactly the logical consequences of the program.

For any set Y of atoms define an interpretation IY by

IY (q) =

{
true if q ∈ Y

false if q 6∈ Y

Then I{november,scotland,arctic,noSun} is a model of our program.

Another fixed point of f is

{november, scotland, arctic, noSun, australia, sun}

and I{november,scotland,arctic,noSun,australia,sun} is another model.



The general propositional case

We now consider a general program in definite clause propositional
logic, given as a set P of axioms, each of the one of the forms

q

p1 ∧ . . . ∧ pk → q

Let X be the finite set of all atoms appearing in the program.

Define f : P(X )→ P(X ) by

f (Y ) = Y ∪ {q | q ∈ P is an atom} ∪
{q | (p1 ∧ · · · ∧ pk → q) ∈ P and p1 ∈ Y and . . . and pk ∈ Y }

It is easy to check that f is monotone.

(Exercise!)
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Fixed points and models

IY (q) =

{
true if q ∈ Y

false if q 6∈ Y

Theorem

(Proof straightforward)

IY is a model of the program P if and only if Y is a fixed point of
the function f .

Theorem

(Proof straightforward)

If Y is the least fixed point of f then IY is the minimal model.
That is, for any other model I ′, it holds that

IY (q) = true implies I ′(q) = true

for all propositional atoms q.

We now show that f always has a least fixed point and this gives
us a means of constructing the minimal model.
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Existence of least fixed point — finite case

Theorem
Suppose f : P(X )→ P(X ) is monotone, where X is a finite set.
Define:

f 0({ }) = { }
f n+1({ }) = f (f n({ }))

Then for some N ≤ |X | (where |X | is the number of elements of
X ) it holds that f N({ }) is the least fixed point of f .

In particular, every monotone function f : P(X )→ P(X ) has a
least fixed point.

Note that one can think of f n({ }) as

n times︷ ︸︸ ︷
f ( f ( . . . f ({ }). . .))



Proof

We first prove, by induction on n that, f n({ }) ⊆ f n+1({ }).
When n = 0 we have f 0({ }) = { } ⊆ f 1({ }) because the empty
set is a subset of every set.
When n > 0, the induction hypothesis gives that
f n−1({ }) ⊆ f n({ }). So, by monotonicity, we have that
f (f n−1({ })) ⊆ f (f n({ })). That is, indeed f n({ }) ⊆ f n+1({ }).

So, for every n ≥ 0, either f n({ }) is a fixed point, or f n+1({ })
contains at least one new element not contained in f n({ }). Since
there are only |X | possible new elements to include, a fixed point
must be reached at f N({ }) for some N ≤ |X |.

To show that f N({ }) is the least fixed point, let Y be any fixed
point. We show, by induction on n, that f n({ }) ⊆ Y always holds.
This is trivial for n = 0. For n > 0, the induction hypothesis is that
f n−1({ }) ⊆ Y . By monotonicity, and because Y is a fixed point,
f (f n−1({ })) ⊆ f (Y ) = Y . That is, f n({ }) ⊆ Y as required.



A decision procedure for propositional Prolog

Given a program P and a goal q1, . . . , qm, we want to decide if
q1 ∧ · · · ∧ qm is a logical consequence of P.

First construct the function f associated with P.

Successively calculate f ({ }), f (f ({ })), f (f (f ({ }))), . . .

By the theorem, we know that we will encounter the least fixed
point after at most |X | steps, where X is the set of atoms in the
program.

We detect when we have arrived at the least fixed point by
checking if the next application of f leaves the set of atoms
unchanged.

Now simply check if the all the goal atoms q1, . . . , qm are
contained in the least fixed point. If so, return yes. Otherwise,
return no.



The general (predicate logic) case

Now we consider the case of definite clause predicate logic, where
the program P is a set F1, . . . ,Fn of definite clauses

B

A1 ∧ · · · ∧ Ak → B

understood as implicitly universally quantified.



Herbrand models

A structure S is called a Herbrand structure if:

I The universe is the Herbrand universe.

I A constant c is interpreted by cS = c.

I A function symbol f/k is interpreted by
fS(u1, . . . , uk) = f(u1, . . . , uk).

A Herbrand model is just a Herbrand structure S that is a model
of the program P.

A Herbrand model S is called minimum if, for any other Hebrand
model S ′, it holds that

pS(u1, . . . , uk) = true implies pS
′
(u1, . . . , uk) = true

for every predicate symbol p/k and ground terms u1, . . . , uk



Interpreting program as monotone function

A ground atomic formula is an atomic formula containing no
variables.

We use the program P to define a function f : P(X )→ P(X ),
where X is the set of all ground atomic formulas, by

f (Y ) = Y ∪ {Bθ | B ∈ P is atomic , θ a ground substitution} ∪
{Bθ | (A1 ∧ · · · ∧ Ak → B) ∈ P, θ a ground substitution,

A1θ ∈ Y and . . . and Akθ ∈ Y }

where a ground substitution is a substitution of ground terms to
variables.

It is straightforward to show that f is monotone.

The definition is very similar to the propositional case. The main
differences are: the use of substitutions, and the fact that the set
X is not in general finite in the case of predicate logic.



Fixed points and Herbrand models

For a set Y of ground atomic formulas, define a Herbrand
structure HY by:

pHY (u1, . . . , uk) = true ⇔ p(u1, . . . , uk) ∈ Y

Theorem
HY is a Herbrand model of the program P if and only if Y is a
fixed point of the function f .

Theorem
If Y is the least fixed point of f then HY is the minimum
Herbrand model.

As in the propositional case, we show that f always has a least
fixed point and this gives us an alternative description of the
Minimum Herbrand model, to that given in Lecture 5.



Existence of least fixed point — general case

The Knaster-Tarski Theorem
Suppose f : P(X )→ P(X ) is monotone. Then f has a least fixed
point.

Proof

(non-examinable)

Define
Y =

\
{Z ⊆ X | f (Z) ⊆ Z}

We have that f (Y ) ⊆ Y because

f (Y ) = f (
\
{Z | f (Z) ⊆ Z}) ⊆

\
{f (Z) | f (Z) ⊆ Z}) ⊆

\
{Z | f (Z) ⊆ Z}

using monotonicity for the middle inclusion.
Now, if W is any set satisfying f (W ) ⊆W , then W ∈ {Z | f (Z) ⊆ Z}, so

Y =
\
{Z | f (Z) ⊆ Z} ⊆W

One such W is W = f (Y ) since, by monotonicity, f (f (Y )) ⊆ f (Y ). So Y ⊆ f (Y ).
Thus Y is a fixed point.

Also, any fixed point W satisfies f (W ) ⊆W , so Y ⊆W . Thus indeed, Y is least.
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Main points today

Notions of monotone function, fixed point, least fixed point

Notion of Herbrand model and minimum Herbrand model

Interpreting program as a monotone function

Correspondence between (least) fixed points and (minimum)
models

General existence of least fixed points, and proof in finite case

Decision procedure for propositional case by calculating fixed point


